分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型变量与函数教案.docx

  • 上传人:仙人****88
  • 文档编号:5772905
  • 上传时间:2024-11-19
  • 格式:DOCX
  • 页数:3
  • 大小:21.12KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    变量 函数 教案
    资源描述:
    教学内容:19.1.1 变量与函数(3) 教学目标: 1.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系; 2.能确定简单实际问题中函数的自变量取值范围; 3.会初步分析简单实际问题中函数关系,讨论变量的变化情况. 教学重点: 用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围. 教学过程: 想一想 问题1 什么叫函数?请用含自变量的式子表示下列问题中的函数关系: (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t(单位:h),行驶的路程为 s(单位:km); (2)多边形的边数为 n,内角和的度数为 y. 函数的定义是,一般地,在某一变化过程中有两个变量x,y,对于变量x 每取一个确定的值,y 都有唯一确定的值与之对应.那么我们就说 x 是自变量,y 是 x 的函数. 问题1(1)中,t 取-2 有实际意义吗? 问题1(2)中,n 取2 有意义吗? 说一说 根据刚才问题的思考,你认为函数的自变量可以取任意值吗? 在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义;超出这个范围,函数没有实际意义,我们把这种自变量可以取的数值范围叫函数的自变量取值范围. 练一练 问题2 你能用含自变量的式子表示下列函数,并说出自变量的取值范围吗?(学生活动:思考、交流、解答、教师评价) (1)等腰三角形的面积为12,底边长为 x,底边上的高为 y,y 随着 x 的变化而变化. (2)把边长为10 cm 的正方形纸板的四个角都截去一个边长为 x 的小正方形,做成一个无盖的长方体,该长方体的体积 V(单位:cm3)随 x(单位:cm)的变化而变化. 确定自变量的取值范围时,不仅要考虑使函数关系式有意义,而且还要注意问题的实际意义. 做一做 例1 一辆汽车油箱中现有汽油50 L,它在高速公路上匀速行驶时每千米的耗油量固定不变.行驶了100 km 时,油箱中剩下汽油40 L.假设油箱中剩下的油量为 y(单位:L),已行驶的里程为 x(单位:km) . (1)在这个变化过程中,y 是x 的函数吗? (2)能写出表示 y 与 x 的函数关系的式子吗? (3)这个变化过程中,自变量 x 的取值范围是什么? (4)汽车行驶了200 km 时,油箱中还剩下多少汽油?行驶了320 km 呢? 解:(略)(教师引导分析、学生思考、解答) 用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式. 例2 小明想用最大刻度为100℃的温度计测量食用油的沸点(远高于100℃),显然不能直接测量,于是他想到了另一种方法,把常温10℃的食用油放在锅内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一次油温,共测量了4次,测得的数据如下: 时间t/s 0 10 20 30 油温w/℃ 10 25 40 55 他测量出把油烧沸腾所需要的时间是160 s,这样就可以确定该食用油的沸点.他是怎样计算的呢?(列表法、解析法) 请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时间t 的函数吗? (2)能写出w 与t 的函数解析式吗? (3)求这种食用油的沸点. 解:(略) (教师引导分析、学生思考、解答) 课堂小结 (1)什么叫函数? (2)本课学习了哪些表示函数的方法? (3)在实际问题中,函数的自变量取值往往是有限制的,怎样确定由实际问题抽象出的函数的自变量取值范围? 课后作业 作业:教科书第82~83页习题19.1 第5,10,11题.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:变量与函数教案.docx
    链接地址:https://www.zixin.com.cn/doc/5772905.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork