苏州市2018届高三上学期期中考试数学试题.doc
《苏州市2018届高三上学期期中考试数学试题.doc》由会员分享,可在线阅读,更多相关《苏州市2018届高三上学期期中考试数学试题.doc(14页珍藏版)》请在咨信网上搜索。
苏州市2018届高三第一学期期中调研试卷 数 学 一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸相应的位置) 1.已知集合,则 ▲ . 2.函数的定义域为 ▲ . 3.设命题;命题,那么p是q的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”). 4.已知幂函数在是增函数,则实数m的值是 ▲ . 5.已知曲线在处的切线的斜率为2,则实数a的值是 ▲ . 6.已知等比数列中,,,则 ▲ . 7.函数图象的一条对称轴是,则的值是 ▲ . 8.已知奇函数在上单调递减,且,则不等式的解集为 ▲ . 9.已知,则的值是 ▲ . 10.若函数的值域为,则实数a的取值范围是 ▲ . 11.已知数列满足,则 ▲ . 12.设的内角的对边分别是,D为的中点,若且,则面积的最大值是 ▲ . 13.已知函数,若对任意的实数,都存在唯一的实数,使,则实数的最小值是 ▲ . 14.已知函数,若直线与交于三个不同的点 (其中),则的取值范围是 ▲ . 二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分) 已知函数的图象与x轴相切,且图象上相邻两个最高点之间的距离为. (1)求的值; (2)求在上的最大值和最小值. 16.(本题满分14分) 在中,角A,B,C所对的边分别是a,b,c,已知,且. (1)当时,求的值; (2)若角A为锐角,求m的取值范围. 17.(本题满分15分) 已知数列的前n项和是,且满足,. (1)求数列的通项公式; (2)在数列中,,,若不等式对有解,求实数的取值范围. 18.(本题满分15分) 如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中为2米,梯形的高为1米,为3米,上部是个半圆,固定点E为CD的中点.MN是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD平行.当MN位于CD下方和上方时,通风窗的形状均为矩形MNGH(阴影部分均不通风). (1)设MN与AB之间的距离为且米,试将通风窗的通风面积S(平方米)表示成关于x的函数; (2)当MN与AB之间的距离为多少米时,通风窗的通风面积取得最大值? 19.(本题满分16分) 已知函数. (1)求过点的的切线方程; (2)当时,求函数在的最大值; (3)证明:当时,不等式对任意均成立(其中为自然对数的底数,). 20.(本题满分16分) 已知数列各项均为正数,,,且对任意恒成立,记的前n项和为. (1)若,求的值; (2)证明:对任意正实数p,成等比数列; (3)是否存在正实数t,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由. 2017—2018学年第一学期高三期中调研试卷 数学(附加题部分) 21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.(几何证明选讲)(本小题满分10分) 如图,AB为圆O的直径,C在圆O上,于F,点D为线段CF上任意一点,延长AD交圆O于E,. (1)求证:; (2)若,求的值. B.(矩阵与变换)(本小题满分10分) 已知矩阵,,求的值. C.(极坐标与参数方程)(本小题满分10分) 在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为. (1)求直线和圆的直角坐标方程; (2)若圆C任意一条直径的两个端点到直线l的距离之和为,求a的值. D.(不等式选讲)(本小题满分10分) 设均为正数,且,求证:. 【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分) 在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率; (2)设表示甲参加游戏的轮数,求的概率分布和数学期望. 23.(本小题满分10分) (1)若不等式对任意恒成立,求实数a的取值范围; (2)设,试比较与的大小,并证明你的结论. 2017—2018学年第一学期高三期中调研试卷 数 学 参 考 答 案 一、填空题(本大题共14小题,每小题5分,共70分) 1. 2. 3.充分不必要 4.1 5. 6.4 7. 8. 9. 10. 11. 12. 13. 14. 二、解答题(本大题共6个小题,共90分) 15.(本题满分14分) 解:(1)∵图象上相邻两个最高点之间的距离为, ∴的周期为,∴,······································································2分 ∴,··················································································································4分 此时, 又∵的图象与x轴相切,∴,·······················································6分 ∴;··········································································································8分 (2)由(1)可得, ∵,∴, ∴当,即时,有最大值为;·················································11分 当,即时,有最小值为0.························································14分 16.(本题满分14分) 解:由题意得,.···············································································2分 (1)当时,, 解得或;································································································6分 (2),····························8分 ∵A为锐角,∴,∴,····················································11分 又由可得,·························································································13分 ∴.·····································································································14分 17.(本题满分15分) 解:(1)∵,∴, ∴,·························································································2分 又当时,由得符合,∴,······························3分 ∴数列是以1为首项,3为公比的等比数列,通项公式为;·····················5分 (2)∵,∴是以3为首项,3为公差的等差数列,····················7分 ∴,·····················································································9分 ∴,即,即对有解,··································10分 设, ∵, ∴当时,,当时,, ∴, ∴,···························································································14分 ∴.·············································································································15分 18.(本题满分15分) 解:(1)当时,过作于(如上图), 则,,, 由,得, ∴, ∴;·······························································4分 当时,过作于,连结(如下图), 则,, ∴, ∴,······································································8分 综上:;·································································9分 (2)当时,在上递减, ∴;································································································11分 当时,, 当且仅当,即时取“”, ∴,此时,∴的最大值为,············································14分 答:当MN与AB之间的距离为米时,通风窗的通风面积取得最大值.····················15分 19.(本题满分16分) 解:(1)设切点坐标为,则切线方程为, 将代入上式,得,, ∴切线方程为;·······························································································2分 (2)当时,, ∴,············································································3分 当时,,当时,, ∴在递增,在递减,·············································································5分 ∴当时,的最大值为; 当时,的最大值为;········································································7分 (3)可化为, 设,要证时对任意均成立, 只要证,下证此结论成立. ∵,∴当时,,·······················································8分 设,则,∴在递增, 又∵在区间上的图象是一条不间断的曲线,且,, ∴使得,即,,····················································11分 当时,,;当时,,; ∴函数在递增,在递减, ∴,····························14分 ∵在递增,∴,即, ∴当时,不等式对任意均成立.··························16分 20.(本题满分16分) 解:(1)∵,∴,又∵,∴;·······································2分 (2)由,两式相乘得, ∵,∴, 从而的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为,则,,······································5分 又∵,∴,即,···························································6分 设,则,且恒成立, 数列是首项为,公比为的等比数列,问题得证;····································8分 (3)法一:在(2)中令,则数列是首项为,公比为的等比数列, ∴, ,·····································································10分 且, ∵数列为等比数列,∴ 即,即 解得(舍去),·························································································13分 ∴,, 从而对任意有, 此时,为常数,满足成等比数列, 当时,,又,∴, 综上,存在使数列为等比数列,此时.······················16分 法二:由(2)知,则,,且, ∵数列为等比数列,∴ 即,即 解得(舍去),·······················································································11分 ∴,,从而对任意有,····································13分 ∴, 此时,为常数,满足成等比数列, 综上,存在使数列为等比数列,此时.······················16分 21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.(几何证明选讲,本小题满分10分) 解:(1)证明 :连接,∵,∴, 又,∴为等边三角形, ∵,∴为中边上的中线, ∴;······································································5分 (2)解:连接BE, ∵,是等边三角形, ∴可求得,, ∵为圆O的直径,∴,∴, 又∵,∴∽,∴, 即.··················································································10分 B.(矩阵与变换,本小题满分10分) 解:矩阵A的特征多项式为, 令,解得矩阵A的特征值,····························································2分 当时特征向量为,当时特征向量为,·····································6分 又∵,······························································································8分 ∴.···········································································10分 C.(极坐标与参数方程,本小题满分10分) 解:(1)直线的普通方程为;··········································································3分 圆C的直角坐标方程为;·······························································6分 (2)∵圆C任意一条直径的两个端点到直线l的距离之和为, ∴圆心C到直线l的距离为,即,·······················································8分 解得或.·······························································································10分 D.(不等式选讲,本小题满分10分) 证:∵, ∴ , ∴.····················································································10分 22.(本题满分10分) 解:(1)甲拿到礼物的事件为, 在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关, 则, 答:甲拿到礼物的概率为;·······················································································3分 (2)随机变量的所有可能取值是1,2,3,4.·····································································4分 , , , , 随机变量的概率分布列为: 1 2 3 ·············································8分 4 P 所以.····································································10分 23.(本题满分10分) 解:(1)原问题等价于对任意恒成立, 令,则, 当时,恒成立,即在上单调递增, ∴恒成立; 当时,令,则, ∴在上单调递减,在上单调递增, ∴,即存在使得,不合题意; 综上所述,a的取值范围是.················································································4分 (2)法一:在(1)中取,得, 令,上式即为, 即,·····························································································7分 ∴ 上述各式相加可得.····················································10分 法二:注意到,,……, 故猜想,····································································5分 下面用数学归纳法证明该猜想成立. 证明:①当时,,成立;·············································································6分 ②假设当时结论成立,即, 在(1)中取,得, 令,有,·······································································8分 那么,当时, ,也成立; 由①②可知,.·····································································10分 高三数学 期中试卷 第 14 页 共 14 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏州市 2018 届高三 上学 期中考试 数学试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文