《指数函数》教学设计.doc
《《指数函数》教学设计.doc》由会员分享,可在线阅读,更多相关《《指数函数》教学设计.doc(3页珍藏版)》请在咨信网上搜索。
《指数函数》教学设计 三、目标分析 1.知识技能目标 掌握指数函数的概念、图象和性质。 2.过程与方法目标 通过自主探索,让学生经历“特殊→一般→特殊”的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法。 3.情感、价值观目标 让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,展现数学实用价值及其在社会进步、人类文明发展中的重要作用。 二、重难点分析 根据新课程标准及对教材的分析,确定本节课重难点如下: 重点:本节课是围绕指数函数的概念和图象,并依据图象特征归纳其性质展开的。因此本节课的教学重点是掌握指数函数的图象和性质。 难点: 1、对于和时函数图象的不同特征,学生不容易归纳认识清楚。因此,弄清楚底数a对函数图象的影响是本节的难点之一。 2、底数相同的两个函数图象间的关系。 五、教法准备 七、教学过程 2.新课引入 观看视频解答下面两个问题: 问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个……,这样的细胞分裂x次后,细胞个数y与x的函数关系式为:y=2x(x∈N*) 提问:y=2x与y=3x这类函数的解析式有何共同特征? 答:函数解析式都是指数形式,底数为定值且自变量在指数位置。 (若用a代换两个式子中的底数,并将自变量的取值范围扩展到实数集则得到……) 3.探索新知 〈一〉指数函数的定义 一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 提问:在本定义中要注意哪些要点? 1 自变量 x 2 定义域 R 3 a的范围 a>0,且a≠1 4 定义的形式(对应法则) y=ax 进一步提问:为什么规定定义中? 将a如数轴所示分为:,,,和五部分进行讨论: (1)如果, 比如,这时对于等,在实数范围内函数值不存在; (2)如果, (3)如果,,是个常值函数,没有研究的必要; (4)如果或即,可以是任意实数。 * 因为指数概念已经扩充到整个实数范围,所以在的前提下,可以是任意实数,即指数函数的定义域为R。 〈三〉指数函数性质 根据指数函数的图象特征,由特殊到一般的推理方法提炼指数函数的性质,完成下表: a>1 0<a<1 图 象 性 质 (1)定义域:R (2)值 域:(0,+∞) (3)过点(0,1),即x=0时,y=1 (4)在R上是增函数 (4)在R上是减函数 (说明:教材对于指数函数性质的处理,仅是观察图象发现的,其正确性理应严格证明,但教材不做要求) 〈二〉指数函数图象 指数函数的图象是怎样的呢?先看特殊例子(将同学们分两组用描点法分别画出下列函数的图象) 第一组:画出,的图象;第二组:画出,的图象。 (及时指导学生作图,然后播放已经做好的函数图象,让学生比较与自己所画出来的有哪些异同点。) 提问:此两组图象有何共同特征?当底数和时图象有何区别? 5 课堂练习 比较下列数值的大小 6.课堂小结 设问:本课我们主要学习了哪些内容?应当注意些什么? 本节课主要学习了指数函数的定义、图象和性质。弄清楚底数和时函数图象的不同特征及性质是学好本节课的关键所在。 7.课后作业 ①课本第73页习题2.6 1、2 ②收集关于指数函数应用的相关资料,通过分析整理,写一篇800字左右的报告。 例2 说明下列函数的图象与指数函数的图象的关系,并画出它们的示意图。 ⑴; ⑵ 解:⑴比较函数与的关系: 与相等, 与相等, 与相等, ………… 由此可以知道,将指数函数的 图象向左平行移动1个单位长度,就得到 函数的图象。 ⑵比较函数与的关系: 与相等, 与相等, 与相等, ………… 由此可以知道,将指数函数的图象向右平行移动2个单位长度,就得到函数的图象。 第2页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数函数 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文