成人高考专升本高等数学考试大纲.docx
《成人高考专升本高等数学考试大纲.docx》由会员分享,可在线阅读,更多相关《成人高考专升本高等数学考试大纲.docx(4页珍藏版)》请在咨信网上搜索。
成人高考专升本高等数学考试大纲 总要求 考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学的基本概念与基本理论,学会、掌握或熟练掌握上述各部分的基本方法应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力,能运用基本概念、基本理论和基奉方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次. 复习考试内容 一、极限 1.知识范围 (1)数列极限的概念与性质 数列极限的定义 唯一性,有界性,四则运算法则,夹逼定理,单调有界数列,极限存在定理 (2)函数极限的概念与性质 函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x一∞,x→+∞,x→—∞)时函数的极限,唯一性,法则,夹逼定理 (3)无穷小量与无穷大量 无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较 (4)两个重要极限 2.要求 (1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件 (2)了解极限的有关性质,掌握极限的四则运算法则 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限 (4)熟练掌握用两个重要极限求极限的方法 二、连续 1知识范围 (1)函数连续的概念 函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点 (2)函敖在一点处连续的性质 连续函数的四则运算,复台函数的连续性,反函数的连续性 (3)闭区间上连续函数的性质 有界性定理,最大值与最小值定理,介值定理(包括零点定理) (4)初等函数的连续性 2.要求 (1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的判断方法 (2)会求函数的间断点 (3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题 (4)理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学 三、导数与微分 1知识范围 (1)导数概念 导数的定义,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与连续的关系 (2)求导法则与导数的基本公式 导数的四则运算反函数的导数导数的基本公式 (3)求导方法 复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数 (4)高阶导数 高阶导数的定义高阶导数的计算 (5)微分 微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性 2.要求 (l)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导散的方法 (2)会求曲线上一点址的切线方程与法线方程 (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数 (4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数 (5)理解高阶导数的概念,会求简单函数的n阶导数 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分 (二)微分中值定理及导致的应用 1.知识范围 (l)微分中值定理 罗尔(Rolle)定理拉格朗日(Lagrange)中值定理 (2)洛必迭(I,’Hospital)法则 (3)函数单调性的判定法 (4)函数的极值与极值点、最大值与最小值 (5)曲线的凹凸性、拐点 (6)曲线的水平渐近线与铅直渐近线 2.要求 (l)理解罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式 (2)熟练掌握用洛必达法则求未定式的极限的方法 (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式 (4)理解函数扳值的概念掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题 (5)会判断曲线的凹凸性,会求曲线的拐点 (6)会求曲线的水平渐近线与铅直渐近线 2、一元函数积分学 (一)不定积分 1.知识范围 (1)不定积分 原函数与不定积分的定义原函数存在定理不定积分的性质 (2)基本积分公式 (3)换元积分法 第一第换元法(凑微分法)第二换元法 (4)分部积分法 (5) -些简单有理函数的积分 2.要求 (1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理 (2)熟练掌握不定积分的基本公式 (3)熟练掌握不定积分第-换元法,掌握第二换元法(限于三角代换与简单的根式代换) (4)熟练掌握不定积分的分部积分法 (5)会求简单有理函数的不定积分 (二)定积分 1.知识范围 (1)定积分的概念 定积分的定义及其几何意义可积条件 (2)定积分的性质 (3)定积分的计算 变上限积分牛顿莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法 (4)无穷区间的反常积分 (5)定积分的应用 平面图形的面积旋转体的体积 2.要求 (1)理解定积分的概念及其几何意义,了解函数可积的条件 (2)掌握定积分的基本性质. (3)理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法 (4)熟练掌握牛顿一莱布尼茨公式 (5)掌握定积分的换元积分法与分部积分法 (6)理解无穷区间的反常积分的概念,掌握其计算方法 (7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积 四、多元函数微积分学 (一)多元函数微分学 1、知识范围围 (1)多元函数 多元函数的定义- 二元函数的几何意义二元函数极限与连续的概念 (2)偏导数与全微分 偏导数全微分二阶偏导数 (3)复合函数的偏导数 (4)隐函数的偏导数 (5)二元函数的无条件椴值与条件擞值 2.要求 (l) 了解多元函数的概念、二元函数的几何意义会求二元函数的表达式及定义域丁解二元函数的极限与连续概念(对计算不作要求)。 (2)理解偏导数概念,了解偏导数的几何意义,了解盘微分概念.了解全微分存在的必要条件与充分条件。 (3)掌握二元函数的一、二阶偏导数计算方法 (4)掌握复合函数一阶偏导数的求洁 (5)会求二元函数的生微分 (6)掌握由方程F( x.y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法 (7)会求二元函数的无条件极值会用拉格朗日乘数法求一元函数的条件极值- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成人高考 高等数学 考试 大纲
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文