基于BP神经网络的中国建筑业碳达峰预测与实证路径.pdf
《基于BP神经网络的中国建筑业碳达峰预测与实证路径.pdf》由会员分享,可在线阅读,更多相关《基于BP神经网络的中国建筑业碳达峰预测与实证路径.pdf(7页珍藏版)》请在咨信网上搜索。
1、 2 0 2 3年第3期 第2 5卷(总第1 3 9期)淮 南 师 范 学 院 学 报J O U R N A LO FHU A I N A NN O RMA LUN I V E R S I T YN o.3,2 0 2 3 G e n e r a lN o.1 3 9,V o l.2 5 收稿日期2 0 2 2-0 4-2 7 基金项目安徽理工大学党的十九届六中全会精神研究阐释专项课题“双碳背景下安徽省碳排放评估与实现路径研究”(s j j l z q h 2 0 2 1-1 5)。作者简介李可馨(1 9 9 7),女,安徽理工大学人文社会科学学院硕士研究生,研究方向:低碳发展;代大为(1 9
2、 7 9),男,安徽理工大学人文社会科学学院副教授,博士研究生,硕士生导师,研究方向:公共管理与城市文化。基于B P神经网络的中国建筑业碳达峰预测与实证路径李可馨,代大为(安徽理工大学 人文社会科学学院,安徽 淮南 2 3 2 0 0 1)摘 要随着全球气候变暖的加剧,人们越来越认识到减缓气候变化的重要性,研究各行业碳达峰情景具有重要意义。文章基于2 0 0 42 0 1 9年建筑行业相关历史数据,使用B P神经网络构建建筑业碳排放量预测模型。藉文献资料梳理影响建筑业碳排放的各类因素,运用灰色关联分析筛选影响建筑业碳排放的9个重要因素,并通过情景分析法预设3种情景预测9个影响因素在2 0 2
3、02 0 3 5年的具体参数。研究表明,在基准情景与低碳情景下,建筑业分别于2 0 3 1年和2 0 2 6年到达峰值。关键词碳排放预测;灰色关联分析;B P神经网络;情景分析法 中图分类号F 4 2 6.9 文献标识码A 文章编号1 0 0 9-9 5 3 0(2 0 2 3)0 3-0 0 7 9-0 7 工业革命以来,大量的化石燃料被开采使用,二氧化碳排放量显著增加,全球气温升高。作为世界上最大的发展中国家,中国政府承诺将努力在2 0 3 0年实现碳达峰,并在2 0 6 0年实现碳中和。作为拉动国民经济发展的重要支柱产业,建筑业长期存在高污染、高耗能的问题。随着我国城市化程度的不断提高,
4、建筑生产过程中的碳排放也在不断攀升。针对建筑业碳排放进行研究预测,并对建筑业碳达峰实现路径提出切实可行的意见十分必要。一、文献综述近年来,学界针对建筑业碳减排工作做了大量研究,涉及建筑业碳排放量的测算、碳排放驱动因素分析、建筑业碳排放预测等方面。关于建筑碳排放测算的方法,常用的有投入产出法、全生命周期法以及排放因子法等。张智慧等1使用投入产出法核算建筑业碳排放量。冯博和王雪青2根据I P C C碳排放测算方法建立了基于排放因子的建筑碳排放测算模型。对于建筑业碳排放的驱动因素分解分析,常用对数平均迪氏指数(LMD I)分解法、S T I R P AT模型等方法。人口数量、建筑业产值、劳动生产率等
5、都是影响建筑业碳排放的关键因素。目前,针对建筑业碳排放预测研究主要采用情景分析法、B P神经网络与灰色预测模型等方法。赵冬蕾等3使用系统动力学预测建筑业碳排放,研究表明节能减排能够有效降低建筑业直接碳排放量。马彩云等4使用灰色预测模型对安徽省建筑业2 0 1 72 0 2 1年碳排放进行预测,结果显示安徽省建筑业碳排放量呈上升趋势。灰色预测GM(1,1)模型适用于样本数据较少的研究,但该模型的预测结果往往呈单调递增或递减趋势,不能很好地反应碳排放变化情况。高思慧等5使用B P神经网络模型预测中国建筑业2 0 1 72 0 2 0年的碳排放,研究表明此模型精度较高,适用于建筑业碳排放研究。文章选
6、取B P神经网络建立建筑业碳排放预测模型,使用灰色关联分析和情景分析法对建筑业碳排放影响因素进行筛选与分析,基于2 0 0 42 0 1 9年 建 筑 业 相 关 历 史 数 据,对 中 国 建 筑 业2 0 2 02 0 3 5年的碳排放进行预测,并根据预测结果提出切实可行的意见,为实现建筑业碳达峰提供参考。二、研究方法(一)建筑业碳排放测算方法建筑业碳排放主要分为两部分:一是直接碳排放,即由建筑业活动自身生产消耗的化石能源所产生的碳排放;二是间接碳排放,主要是建筑材料的生产及使用过程中产生的碳排放。本研究采用I P C C提供的排放因子法对建筑业碳排放进行测算。考虑到数据的可获取性,文章选
7、取煤炭、焦炭、原油、汽油、煤油、柴油、燃料油、天然气和电力9种能源产生的碳排放作为直接碳排放的来源,选取水泥、钢材、木材、玻璃和铝材5种建筑材料产生的碳排放作为间接碳排放,建立建筑业碳排放测算模型如下:C=C1+C2=4 4/1 2Niii+Mjj(1-j)(1)式(1)中:4 4/1 2为碳转换系数;C为建筑业碳排放总量;C1为直接碳排放量;C2为间接碳排放量;Ni为第i种能源的消耗量;i为第i种能源的碳排放系数;i为标准煤折算系数;Mj为建筑业第j类建筑材料的消耗量;j为第j种建筑材料的二氧化碳排放系数;j为第j种建筑材料的回收系数。建筑材料的碳排放系数以及各类能源的碳排放系数及标准煤折算
8、系数见表1和表2。表1 建筑材料的二氧化碳排放系数建材种类水泥钢材玻璃木材铝材排放系数0.8 2 2千克/千克1.7 8 9千克/千克0.9 6 6千克/千克-8 4 2.8千克/立方米2.6千克/千克表2 9类能源的碳排放系数及标煤折算系数煤炭焦炭原油汽油煤油柴油燃料油天然气电力碳排放系数/(t C/标准当量煤)0.7 2 50.8 5 50.5 4 00.5 5 40.5 7 10.5 9 20.6 1 90.4 2 70.2 7 5标准煤折算系数0.6 8 60.9 7 11.4 2 91.4 7 11.4 7 11.4 5 71.4 2 91.1 4 31.2 2 9 注:标准煤折算系
9、数天然气的单位为标准当煤量/万立方米,电力为标准当煤量/万千瓦时,其他均为标准当量煤/吨。(二)灰色关联分析灰色关联分析适用于处理数量较小且样本规律不太明显的数据,因此本研究采用灰色关联分析法对建筑业碳排放影响因素指标进行筛选。灰色关联分析通过计算关联度来反映两个因素之间的相关程度。关联度越大说明识别对象对研究对象的影响程度越高。步骤如下:第一 步,设 参 考 序 列 为X0=(X0(1),X0(2),X0(n);比较序列Xi=(Xi(1),Xi(2),Xi(k),Xi(n),其中i=1,2,m;k=1,2,n。第二步,数据归一化。计算公式为:X i=XiXi1(2)其中,i=0,1,2,m。
10、第三步,计算比较数列与参考数列的绝对差值。计算公式如下:i(k)=X 0(k)-X 1(k)(3)其中,其中i=1,2,m;k=1,2,n。第四步,计 算 灰 色 关 联 系 数。计 算 公 式如下:(X0(k),Xi(k)=m i nim i nki(k)+m a xim a xki(k)i(k)+m a xim a xki(k)(4)其中,为分辨系数,通常情况下取值为0.5;i=1,2,m;k=1,2,n。第五步,计算灰色关联度。计算公式如下:(x0,xi)=1nnk=1(x0(k),xi(k)(5)其中,i=1,2,m;k=1,2,n。(三)B P神经网络B P神经网络是在1 9 8 6
11、年由鲁梅尔哈特与麦克利兰领导的一个研究团队中所提出的,它是一种基于误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。B P神经网络具有很强的非线性学习能力,它实际上是一08淮南师范学院学报 2 0 2 3年第3期个由多个神经元构成的并行分布的处理器,通过对数据进行学习掌握对数据的分类判断能力。学习过程结束后,根据已习得的规律作出对应反应。基本原理如图1所示。图1 B P神经网络结构图输入层节点数为n,隐含层节点数为m,wi j为输入层第i节点到隐含层第j节点的权值;wj为隐含层第j节点到输出层的权值。B P算法的主要思想是通过激活函数将输入层数据映射到输出层,数据通过正向传
12、播计算和误差反向传播并更正,一直重复此过程直到误差小于先前设定好的目标误差。三、建筑业碳排放实证模型构建(一)数据来源近年来,国内许多学者都对建筑业碳排放影响因素进行过相关研究。文章通过梳理文献,对建筑业碳排放影响因素进行识别,识别结果见表3。表3 碳排放影响因素识别结果5-6 7(P 4 8-4 9)8类别影响因素单位人口(X1)人口万人(X 2)建筑业从业人数人经济(X 3)国内生产总值亿元(X 4)城市化率百分比(X 5)建筑业人均G D P元(X 6)人均可支配收入元(X 7)建筑产业总产值亿元(X 8)建筑面积(竣工面积)万平方米技术(X 9)建筑业能源强度(建筑业能源消耗量/建筑业
13、总产值)万吨标准煤/亿元(X 1 0)建筑业能源消耗量万吨标准煤 本研究通过对2 0 0 42 0 1 9年的 中国统计年鉴 中国建筑业统计年鉴 中国能源统计年鉴等资料进行数据收集和整理,将相关数据代入建筑业碳排放测算公式(1)可得建筑业碳排放量。碳排放数据如表4所示。表4 2 0 0 42 0 1 9年中国建筑业碳排放量年份碳排放量/万吨2 0 0 45 42 0 92 0 0 55 78 8 82 0 0 66 87 3 22 0 0 77 25 3 92 0 0 89 17 2 12 0 0 91 0 29 0 12 0 1 01 3 28 3 52 0 1 12 4 45 3 52 0
14、 1 23 1 49 1 52 0 1 32 0 87 2 82 0 1 42 2 59 4 92 0 1 51 7 03 0 12 0 1 61 7 61 6 62 0 1 71 8 62 3 92 0 1 81 9 93 6 92 0 1 92 0 84 9 6 (二)影响因素筛选将碳排放作为参考序列,其他9个影响因素作为比较序列,代入关联度计算公式可得各因素间的关联度如表5所示。表5 影响因素关联度影响因素X1X2X3X4X5关联度0.6 4 97 9 0.7 3 64 3 0.7 9 64 2 0.6 7 52 6 0.8 7 97 6影响因素X6X7X8X9X1 0关联度0.8 13
15、 0 3 0.6 8 68 3 0.8 5 35 0 0.5 9 46 3 0.7 8 01 2 由表5可知,影响中国建筑业碳排放量由大到小的因素为:人均G D P、建筑面积、人均可支配收入、国内生产总值、建筑业能源消耗量、建筑业从业人数、建筑业总产值、城市化率、总人口和能源强度。(三)建立建筑业碳排放预测模型选择关联度大于0.6的影响因素作为B P神经网络模型的输入值,将2 0 0 42 0 1 9年的建筑业碳排放量作为B P神经网络的输出变量,则输入层为9,输出层为1。按照经验公式,隐含层的神经元个数为p=n+m+a,a1,1 0,计算可得隐含层神经元个数在51 3个之间,本研究将18李可
16、馨,代大为:基于B P神经网络的中国建筑业碳达峰预测与实证路径隐含层神经元数量设为1 0个,建立9-1 0-1结构B P神经网络模型,得到的神经网络回归曲线如图2所示。图2 神经网络训练结果回归曲线由图2可以看出,训练样本的输出值与期望值之间的相关系数为0.9 9 57 4,验证样本与测试样本的相关系数都为0.9 9 99 9,全样本相关系数为0.9 9 56 4,数据回归较好。2 0 0 42 0 1 9年建筑业碳排放的实际值与预测值的拟合图如图3所示。图3 2 0 0 42 0 1 9年建筑业碳排放量实际值与预测值拟合图由拟合曲线来看实际数据与预期数据的偏离较小,所得训练网络泛化能力较强。
17、此模型适用于建筑业碳排放量的预测。四、情景分析与碳排放预测(一)情景设定“情景”一词最早由赫尔曼卡恩和维纳提出,他们提到:未来的发展是多样的,在未来可能有各种情况出现,各种情况的实现途径也不是唯一的,所以对未来各种情况的描述及实现的多种途径构成了情景。文章运用情景分析方法,分析2 0 2 02 0 3 5年建筑行业的碳排放影响因素,并在不同情况下对建筑行业的碳排放进行预测。根据我国近年来人口、经济发展、能源消费的实际情况,结合中国国际问题研究院“十四五”系列规划研究及“十四五”时期我国碳达峰和碳中和机遇与挑战 等文献资料,将9项影响建筑碳排放因素的发展情况分为高碳、基准和低碳3种情景。情景分析
18、的预测时间为2 0 2 02 0 3 5年,根据不同时期国家规划对各类影响因素的要求,必要时会对时间段进行划分,以期得到更为准确的预测数据。高碳情景:对当前建筑业产业结构与能源消耗不做强制性约束,按照既往的发展速率进行预测。基准情景:考虑外界环境变化,参考建筑业相关政策,对产业结构、能源消耗做调整来减缓建筑业碳排放的情景。低碳情景:以实现2 0 3 0年之前碳达峰为目标,参考“十四五”时期相关政策,加大力度对建筑产业结构与能源消费进行减排工作的情景。(二)情景参数预测1.人口规模情景预测2 0 2 0年末,中国人口达到1 4 12 1 2万人,全国人口净增2 0 4万人。相较于2 0 1 9年
19、的4 6 7万新增人口、2 0 1 8年的5 3 0万新增人口,2 0 2 0年的净增人口规模降幅超过一半,几乎接近0增长。中国人口与发展研究中心预计,“十四五”时期总人口年均增量为2 4 6万人,中国总人口在2 0 2 7年后开始进入负增长,预计2 0 2 7年将达到峰值1 4.1 7亿,此后开始下降,2 0 3 5年将降至1 4.0 3亿。根据我国的人口发展情况,本研究采用中国人口与发展研究中心的统计资料数据为基准情景下的人口增长率。不同情景下的中国人口数量参数详见表6。2.建筑业从业人数情景预测截至2 0 1 9年末,我国建筑业从业人数为54 2 7.3 7万人,较2 0 1 8年减少1
20、 3 5.9 3万人,同比下降2.4 4%。近几年,我国建筑市场进入到发展的平缓期,以往的粗放式经营已不适合当下的大环境,各种建筑企业破产,行业人员流失。由此可28淮南师范学院学报 2 0 2 3年第3期以预见,未来几年建筑业从业人数会继续逐年降低。根据以往建筑业从业人数增加速率,文章设定不同情景下的建筑业从业人数如表7所示。表6 不同情景下的中国人口平均增速情景Q 1Q 2Q 32 0 2 02 0 2 7年0.1 6%0.1 5%0.1 2%2 0 2 72 0 3 5年-0.1 0%-0.1 2%-0.1 5%表7 不同情景下的建筑业从业人数平均增速情景Q 1Q 2Q 32 0 2 02
21、 0 2 7年-0.9 0%-1.1 0%-1.3 0%2 0 2 72 0 3 5年0.1%-0.7 0%-0.3 0%3.经济发展情景预测2 0 2 0年,我 国 全 年 国 内 生 产 总 值(G D P)10 1 59 8 6亿元,较上一年增长2.3%。党的十九大指出,到2 0 3 5年,“我国经济实力、科技实力将大幅跃升,跻身创新型国家前列”,“人民生活更为宽裕,中等收入群体比例明显提高”。刘伟等9预测,要实现上述目标,2 0 2 02 0 3 5年中国经济至少要完成人均实际G D P水平翻一番的增长目标,即年均G D P增速达到4.8%。李平等1 0预测,基准情景下,在未来的3个阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 BP 神经网络 中国 建筑业 碳达峰 预测 实证 路径
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。