(人教版)数学五年级上册《植树问题》教学设计.docx
《(人教版)数学五年级上册《植树问题》教学设计.docx》由会员分享,可在线阅读,更多相关《(人教版)数学五年级上册《植树问题》教学设计.docx(6页珍藏版)》请在咨信网上搜索。
(人教版)数学五年级上册《植树问题》教学设计 鄂城区杨叶镇团山小学:袁国齐 【教学内容】 义务教育课程标准实验教科书(人教版)数学五年级上册第117页例1及有关练习。 【教材、学生分析】 这节课主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单问题。 学生在二年级时,初步积累了一些探索规律的经验,对这类现象也有所发现。但是,因为小学生的抽象思维能力和理解文字的能力还较弱。所以,在这节课中,我主要是通过直观的演示,让学生充分理解植树问题中的术语“间距”“间隔数”;通过学生的自主画图,抽象出规律“间隔数+1=棵数”,而后,利用规律解决生活中的类似问题。 【教学目标】 【知识目标】 (1)使学生理解植树问题中的数学术语:间隔数、间距。 (2)使学生在理解植树问题的概念的同时,通过画图,理解和掌握在一条线段上两端都栽的植树问题的规律,形成公式。 (3)使学生在理解的基础上,会正确应用公式解决类似的数学问题。 【过程与方法】 让学生经历在一条线段上两端都栽的植树问题的规律的形成过程,初步体会解决植树问题的思想方法。 【情感、态度、价值观】 (1)初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。 (2)让学生感受数学知识在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。 【教学重点】理解和掌握植树问题的规律。 【教学难点】能运用植树问题的规律解决实际问题。 【教学准备】课件、实验纸,学生准备直尺和铅笔。 【教学过程】 一、创设情境,导入新课 1、出示图片,引发思考 谈话提问:同学们,这张图片是哪儿?(学校院墙外沿河马路)从图上你看到了什么?(一排整齐的绿化树) 为了美化乡村,环卫工人在沿河马路上植树。你们知道吗?植树不仅美化环境,其中还有许多数学问题呢,这节课老师将和你们一起来研究植树问题。 2、整体感知,揭示课题 课件出示:如果在全长12米的一条路上,每隔4米种一棵树,可以怎样种? 学生摆小棒(由于题目中的条件没有特别的限定的,同学们从3个不同角度考虑,出现了3种可能种植的情况。) 学生上台演示(3把米尺、4个学生) 课件展示学生的植树方法: (两端都栽,4棵) (只栽一端,3棵) (两端都不栽,2棵) 师:在实际的植树过程中,“两端都栽”、“只栽一端”和“两端都不栽”三种情况都存在,我们必须仔细审题,弄清是哪一种情况。今天,我们主要研究两端都栽的植树问题。 板书:“植树问题(两端都栽)” 3、利用课件介绍概念 师问:这里的12是什么?(师:我们称为“全长”) 这里的“ 4”是什么?(师:我们也可以称为“间距”) 每两棵树间的这一段叫什么(师指着“间隔”说:这是“间隔”)? 这里有几个“间隔”?(师:我们说“3”是“间隔数”) 二、自主探究,建立模型 1、课件出示问题:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗? 2、化繁为简,发现规律 (1)理解题意 师:请看题,你获得了哪些信息?(全长100米,每隔5米……) 师:能再解释一下“两端要栽”吗? 生:头和尾各要种一棵。 (2)形成猜想 猜一猜,一共需要多少棵树苗呢? 生猜测 (3)自主探究 师:出现了几种不同的答案,到底哪个答案是对的?怎样来验证?能用直观的图示方法来研究吗? 课件显示:每隔5米种一棵,再隔5米种一棵……,一直画到100米!感觉怎样? (这样一棵一间隔地画下去,方法是可以的,但太麻烦了,又浪费时间。) 师:要研究间隔数和棵数之间有什么关系,难道没有更简单的方法吗? 师介绍:其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上栽一栽,看一看。大家想不想用这种方法试一试? 师:那么还可以变成多少米,来画图找关系比较方便呢? 生:5米,10米,15米,20米,25米。 师:像这样数据小的数,还有许多。 师:这样一来,虽然不能直接验证了,但可以从简单例子入手,看看间隔数和棵数到底会有什么关系。 师:现在我们来做一个试验,同桌两人拿出实验纸,一人摆小棒,一人画线段图,然后交流,看看有几个间隔,能栽几棵树,把得到的数据填入《植树问题探究报告单》中。 ①两人小组摆一摆,画一画,把试验的结果填在表内。 ②观察表中的间隔数和棵数,你发现了什么规律? 从表中其它的数据里你们还发现了那些规律? (4)展示汇报,发现规律 师:同学们通过用画线段图的办法研究,发现在小数据中两端都栽的情况下,都有“间隔数+1=棵树”的规律。 看来,画线段图确实能帮助我们清晰地分析数量关系,这是数学上常用的一种好方法。 师:“间隔数+1=棵树”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?(让学生思考回答) 看课件,仔细观察:一棵对应一个间隔,这样一直对应下去,100棵后面就有100个间隔,种完了吗? 师:如果这条路变得很长很长、无限长,两端都栽还有这样的规律吗?(让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才达到两端都栽的结果。这个环节,潜移默化地渗透“极限”的思想) 师小结: “间隔数+1=棵树”这样的规律是普遍存在两端要栽的植树问题当中的。 师问:小路一边,两端都栽,10棵树有多少个间隔?20棵、50棵呢?10个间隔有多少棵树?20个、100个呢? (5)运用模型,解决问题 师:研究到这里,现在你能解决例1这个问题吗?请你列出算式。 生板书:100÷5=20(段) 20+1=21(棵) 师追问:先求什么?,再求什么?为什么要加1呢?之前你的猜测对了吗? 质疑:看书P117,有什么不明白的地方吗? 师:通过刚才的学习,你觉得在遇到复杂问题时,我们可以怎么办? 小结化繁为简的解题策略(从简单的情况入手解决复杂的问题)。 三、巩固练习,形成技能 其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一起来看一看。(课件出示有间隔的图片) 师:这些图片中的事物都存在着间隔,在数学上,我们把这类的问题统称为“植树问题”。 下面我们来看一看。 1、填一填:(并说说可以把“什么”理解为植树问题中的“树”来思考) (1)运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插( )面彩旗。 (2)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有( )个车站。 (3)9个同学排成一队做操,从第一个同学到最后一个同学的距离是8米,相邻两个同学的平均距离是( )米。(课件:学校广播体操比赛图片) 2、解决问题: (1)周老师去某班教室,从一楼开始,每走一层有24个台阶,一共走了48个台阶,你知道周老师去几楼的教室吗? (2)在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?(这题要注意什么?) (3)从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远? 在我们生活中,不仅物体与物体、人与人之间有间隔,时间与时间也有间隔。 (4)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 问:这些题是不是应用植树问题的规律解决的?大家掌握了解决植树问题的“钥匙”吗? 师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。 四、全课小结,提炼升华 这节课,我们学习了什么内容?请你回忆一下,在研究植树问题时,我们经历了怎样一个学习过程?对你有什么启示? 送儿歌给学生,结束全课。 小小树苗栽一栽, 两端都栽问题来。 间隔数多1是棵数, 棵数少1是间隔数。 怎样求出间隔数? 全长除以间隔长。 板书设计: 植树问题(两端都栽) 全长÷间距=间隔数 全长÷间隔数=间距 间隔数+1=棵数 间距×间隔数=全长 例1 间隔数: 100÷5=20(段) 棵 数: 20+1=21(棵) 答:一共需要21棵树苗。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 植树问题 人教版 数学 年级 上册 植树 问题 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文