高考函数知识点总结(全面).doc
《高考函数知识点总结(全面).doc》由会员分享,可在线阅读,更多相关《高考函数知识点总结(全面).doc(9页珍藏版)》请在咨信网上搜索。
高考函数总结 一、函数的概念与表示 1、函数 (1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫作自变量。 ②近代定义:设A、B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中,原象集合A叫做函数的定义域,象集合C叫做函数的值域。 (2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。 二、函数的解析式与定义域 1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法: (1) 定义法 (2)变量代换法 (3)待定系数法 (4)函数方程法 (5)参数法 (6)实际问题 2、函数的定义域:要使函数有意义的自变量x的取值的集合。求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1; 如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。 3。复合函数定义域:已知f(x)的定义域为,其复合函数的定义域应由不等式解出。 三、函数的值域 1.函数的值域的定义 在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。 2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。 3.求函数值域的方法 ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围; ②二次函数法:利用换元法将函数转化为二次函数求值域; ③反函数法:将求函数的值域转化为求它的反函数的值域; ④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围; ⑤单调性法:利用函数的单调性求值域; ⑥不等式法:利用不等式的性质求值域; ⑦图象法:当一个函数图象可作时,通过图象可求其值域; ⑧几何意义法:由数形结合,转化距离等求值域。 四.函数的奇偶性 1.定义: 设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为奇函数。如果函数是奇函数或偶函数,则称函数y=具有奇偶性。 2.性质: ①函数具有奇偶性的必要条件是其定义域关于原点对称, ②y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称, ③偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同, ④偶函数无反函数,奇函数的反函数还是奇函数, ⑤若函数f(x)的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和 ⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称] ⑦对于F(x)=f[g(x)]:若g(x)是偶函数,则F(x)是偶函数 若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数 若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数 3.奇偶性的判断 ①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系 五、函数的单调性 1、函数单调性的定义 一般地,设一连续函数 f(x) 的定义域为D,则 · 如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。 · 相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。 则增函数和减函数统称单调函数。 2、判断函数单调性(求单调区间)的方法: (1)从定义入手,(2)从图象入手,(3)从函数运算入手,(4)从熟悉的函数入手 (5)从复合函数的单调性规律入手 注:函数的定义域优先 3、函数单调性的证明:定义法“取值—作差—变形—定号—结论”。 4、一般规律 (1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数; (2)若f(x)为增函数,则-f(x)为减函数; (3)互为反函数的两个函数有相同的单调性; (4)设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。 六、反函数 1、 反函数的概念:设函数y=f(x)的定义域为A,值域为C,由y=f(x)求出,若对于C中的每一个值y,在A中都有唯一的一个值和它对应,那么叫以y为自变量的函数,这个函数叫函数y=f(x)的反函数,记作,通常情况下,一般用x表示自变量,所以记作。 注:在理解反函数的概念时应注意下列问题。 (1)只有从定义域到值域上一一映射所确定的函数才有反函数; (2)反函数的定义域和值域分别为原函数的值域和定义域; 2、求反函数的步骤 (1)解关于x的方程y=f(x),达到以y表示x的目的; (2)把第一步得到的式子中的x换成y,y换成x; (3)求出并说明反函数的定义域(即函数y=f(x)的值域)。 3、关于反函数的性质 (1)y=f(x)和y=f-1(x)的图象关于直线y=x对称; (2)y=f(x)和y=f-1(x)具有相同的单调性; (3)y=f(x)和x=f-1(y)互为反函数,但对同一坐标系下它们的图象相同; (4)已知y=f(x),求f-1(a),可利用f(x)=a,从中求出x,即是f-1(a); (5)f-1[f(x)]=x; (6)若点P(a,b)在y=f(x)的图象上,又在y=f-1(x)的图象上,则P(b,a)在y=f(x)的图象上; (7)证明y=f(x)的图象关于直线y=x对称,只需证得y=f(x)反函数和y=f(x)相同; 七.二次函数 1.二次函数的解析式的三种形式 (1)一般式:f(x)=ax2+bx+c(a≠0),其中a是开口方向与大小,c是Y轴上的截距,而是对称轴。 (2)顶点式(配方式):f(x)=a(x-h)2+k其中(h,k)是抛物线的顶点坐标。 (3)两根式(因式分解):f(x)=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴两交点的坐标。 求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称 轴。又如,已知f(x)=ax2+bx+c(a≠0),方程f(x)-x=0的两根为,则可设 f(x)-x=或。 2.二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴,顶点坐标 (1)a>0时,抛物线开口向上,函数在上单调递减,在上单调递增,时, (2)a<0时,抛物线开口向下,函数在上单调递增,在上单调递减,时, 3.二次函数f(x)=ax2+bx+c(a≠0)当时图象与x轴有两个交点M1(x1,0),M2(x2,0) 4.二次函数与一元二次方程关系 方程的根为二次函数f(x)=ax2+bx+c(a≠0)的的取值。二次函数与一元二次不等式的关系一元二次不等式的解集为二次函数f(x)=ax2+bx+c(a≠0)的的取值范围。 二次函数 △情况 一元二次方程 一元二次不等式解集 Y=ax2+bx+c (a>0) △=b2-4ac ax2+bx+c=0 (a>0) ax2+bx+c>0 (a>0) ax2+bx+c<0 (a>0) 图象与解 △>0 △=0 △<0 方程无解 R 八.指数式与对数式 1.幂的有关概念 (1)正整数指数幂,(2)零指数幂 (3)负整数指数幂(4)正分数指数幂; (5)负分数指数幂 (6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质 3.根式 (1)根式的定义:一般地,如果,那么叫做的次方根,其中,叫做根式,叫做根指数,叫被开方数。 (2)根式的性质: ①当是奇数,则;当是偶数,则 ②负数没有偶次方根, ③零的任何次方根都是零 4.对数 (1)对数的概念 如果,那么b叫做以a为底N的对数,记 (2)对数的性质:①零与负数没有对数 ② ③ (3)对数的运算性质 其中a>0,a≠0,M>0,N>0 (4)对数换底公式: (5)对数的降幂公式: 九.指数函数与对数函数 1、 指数函数y=ax与对数函数y=logax (a>0 , a≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系 名称 指数函数 对数函数 一般形式 Y=ax (a>0且a≠1) y=logax (a>0 , a≠1) 定义域 (-∞,+ ∞) (0,+ ∞) 值域 (0,+ ∞) (-∞,+ ∞) 过定点 (0,1) (1,0) 图象 指数函数y=ax与对数函数y=logax (a>0 , a≠1)图象关于y=x对称 单调性 a> 1,在(-∞,+ ∞)上为增函数 0<a<1, 在(-∞,+ ∞)上为减函数 a>1,在(0,+ ∞)上为增函数 0<a<1, 在(0,+ ∞)上为减函数 值分布 y>1 ? y<1? y>0? y<0? 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同 2、 ,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理) 记住下列特殊值为底数的函数图象: 3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制 4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。 十.函数的图象 1、作函数图象的基本方法有两种: (1) 描点法:1、先确定函数定义域,讨论函数的性质(奇偶性,单调性,周期性)2、列表(注意特殊点,如:零点,最大最小,与轴的交点) 3、描点,连线 如:作出函数的图象. (2) 图象变换法:利用基本初等函数变换作图 ① 平移变换:(左正右负,上正下负)即 ② 对称变换:(对称谁,谁不变,对称原点都要变) ③ 伸缩变换: 导数与积分 1.导数的概念 函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|。 即f(x)==。 2.导数的几何意义 函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f`(x)(x-x)。 3.几种常见函数的导数: ① ② ③; ④; ⑤ ⑥; ⑦; ⑧. 4.两个函数的和、差、积的求导法则 ( ‘=(v0)。 复合函数的导数: 单调区间:一般地,设函数在某个区间可导, 如果,则为增函数; 如果,则为减函数; 如果在某区间内恒有,则为常数; 2.极点与极值: 曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值: 一般地,在区间[a,b]上连续的函数f在[a,b]上必有最大值与最小值。 ①求函数ƒ在(a,b)内的极值; ②求函数ƒ在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。 4.定积分 (1)概念:设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<xi-1<xi<…xn=b把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上取任一点ξi(i=1,2,…n)作和式In=(ξi)△x(其中△x为小区间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[a,b]上的定积分,记作:,即=(ξi)△x。 这里,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。 基本的积分公式: =C; =+C(m∈Q, m≠-1); dx=ln+C; =+C;=+C; =sinx+C; =-cosx+C(表中C均为常数)。 (2)定积分的性质 ①(k为常数); ②; ③(其中a<c<b。 (3)定积分求曲边梯形面积 由三条直线x=a,x=b(a<b),x轴及一条曲线y=f(x)(f(x)≥0)围成的曲边梯的面积。 如果图形由曲线y1=f1(x),y2=f2(x)(不妨设f1(x)≥f2(x)≥0),及直线x=a,x=b(a<b)围成,那么所求图形的面积S=S曲边梯形AMNB-S曲边梯形DMNC=。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 函数 知识点 总结 全面
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文