【研究院】[全国](7)2018高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版).docx
《【研究院】[全国](7)2018高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版).docx》由会员分享,可在线阅读,更多相关《【研究院】[全国](7)2018高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版).docx(15页珍藏版)》请在咨信网上搜索。
2018高考真题分类汇编——直线与圆、圆锥曲线 1.(2018北京·理)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为( ) (A)1 (B)2 (C)3 (D)4 1.C 2.(2018北京·理)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________. 2. 3.(2018全国I·理)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=( ) A.5 B.6 C.7 D.8 3.D 4.(2018全国I·理)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的 直线与C的两条渐近线的交点分别为M、N.若为直角三角形,则|MN|=( ) A. B.3 C. D.4 4.B 5.(2018全国II·理)双曲线的离心率为,则其渐近线方程为( ) A. B. C. D. 5.A 6.(2018全国II·理)已知,是椭圆的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为( ) A. B. C. D. 6.D 7.(2018全国III·理)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( ) A. B. C. D. 7.A 8.(2018全国III·理)设是双曲线()的左,右焦点,是 坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为 ( ) A. B.2 C. D. 8.C 9.(2018江苏)在平面直角坐标系中,若双曲线的右焦点 到一条渐近线的距离为,则其离心率的值是 ▲ . 9.2 10.(2018江苏)在平面直角坐标系中,A为直线上在第一象限内的点,, 以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为 ▲ . 10.3 11.(2018浙江)双曲线的焦点坐标是( ) A.(−,0),(,0) B.(−2,0),(2,0) C.(0,−),(0,) D.(0,−2),(0,2) 11.B 12.(2018浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当 m=___________时,点B横坐标的绝对值最大. 12.5 13.(2018天津·理)已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线的同一条渐近线的距离分别为和,且,则双曲线的方程为( ) (A) (B) (C) (D) 13.C 14.(2018上海)双曲线﹣y2=1的渐近线方程为 . 14.y=± 15.(2018上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为( ) A.2 B.2 C.2 D.4 15.C 16.(2018北京·理)(本小题满分14分) 已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N. (1)求直线l的斜率的取值范围; (2)设O为原点,,,求证:为定值. 16.【解析】(1)因为抛物线y2=2px经过点P(1,2), 所以4=2p,解得p=2,所以抛物线的方程为y2=4x. 由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0). 由得. 依题意,解得k<0或0<k<1. 又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3. 所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A(x1,y1),B(x2,y2).由(1)知,. 直线PA的方程为. 令x=0,得点M的纵坐标为. 同理得点N的纵坐标为. 由,得,. 所以 . 所以为定值. 17.(2018全国I·理)(本小题满分12分) 设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:. 17.【解析】(1)由已知得,l的方程为x=1.由已知可得,点A的坐标为或.所以AM的方程为或. (2)当l与x轴重合时,. 当l与x轴垂直时,OM为AB的垂直平分线,所以. 当l与x轴不重合也不垂直时,设l的方程为,, 则,直线MA,MB的斜率之和为. 由得. 将代入得. 所以,. 则. 从而,故MA,MB的倾斜角互补,所以. 综上,. 18.(2018全国II·理)(本小题满分12分) 设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 18.【解析】(1)由题意得,l的方程为.设, 由得.,故. 所以. 由题设知,解得(舍去),.因此l的方程为. (2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为,则 解得或 因此所求圆的方程为或. 19.(2018全国III·理)(本小题满分12分) 已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差. 19.【解析】(1)设,则. 两式相减,并由得. 由题设知,于是.①,由题设得,故. (2)由题意得,设,则. 由(1)及题设得. 又点P在C上,所以,从而,. 于是.同理. 所以. 故,即成等差数列.设该数列的公差为d, 则.② 将代入①得. 所以l的方程为,代入C的方程,并整理得. 故,代入②解得.所以该数列的公差为或. 20.(2018天津·理)(本小题满分14分) 设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且. (1)求椭圆的方程; (2)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值. 20.【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,又由a2=b2+c2,可得2a=3b.由 已知可得,,,由,可得ab=6,从而a=3,b=2. 所以,椭圆的方程为. (Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2. 由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为 21.(2018江苏)(本小题满分16分) 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为. (1)求椭圆C及圆O的方程; (2)设直线l与圆O相切于第一象限内的点P. ①若直线l与椭圆C有且只有一个公共点,求点P的坐标; ②直线l与椭圆C交于两点.若的面积为,求直线l的方程. 21.【解析】(1)因为椭圆C的焦点为, 可设椭圆C的方程为.又点在椭圆C上, 所以,解得因此,椭圆C的方程为. 因为圆O的直径为,所以其方程为. (2)①设直线l与圆O相切于,则, 所以直线l的方程为,即.由消去y, 得.(*) 因为直线l与椭圆C有且只有一个公共点, 所以. 因为,所以.因此,点P的坐标为. ②因为三角形OAB的面积为,所以,从而. 设,由(*)得, 所以. 因为,所以,即, 解得舍去),则,因此P的坐标为. 综上,直线l的方程为. 22.(2018浙江)(本小题15分) 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满 PA,PB的中点均在C上. (1)设AB中点为M,证明:PM垂直于y轴; (2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围. 22.【解析】(1)设,,. 因为,的中点在抛物线上,所以,为方程, 即的两个不同的实数根. 所以.因此,垂直于轴. (2)由(1)可知所以,. 因此的面积. 因为,所以. 因此,面积的取值范围是. 23.(2018上海)(本小题16分) 设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由. 23.【解析】(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2, ∴|BF|=t+2; 方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2; (2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),kQF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=; (3)存在,设P(,y),E(,m),则kPF==,kFQ=, 直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,), 根据+=,则E(+6,),∴()2=8(+6),解得:y2=, ∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 研究院 全国 2018 高考 分类 汇编 直线 圆锥曲线 教师版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【研究院】[全国](7)2018高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版).docx
链接地址:https://www.zixin.com.cn/doc/5725434.html
链接地址:https://www.zixin.com.cn/doc/5725434.html