高三高考平面向量题型总结-经典.doc
《高三高考平面向量题型总结-经典.doc》由会员分享,可在线阅读,更多相关《高三高考平面向量题型总结-经典.doc(12页珍藏版)》请在咨信网上搜索。
平面向量 一、平面向量的基本概念: 1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。 向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________. 5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。 6. 相等向量:_______________________. 例:下列说法正确的是_____ ①有向线段就是向量,向量就是有向线段; ②则;③ ④若,则A,B,C,D四点是平行四边形的四个顶点; ⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法: 1.向量的加法的运算法则:____________、_________和___________. (1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC的取值范围__________ 例2.化简下列向量 (1) (2) (2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则; 是以,为邻边的平行四边形的一条对角线,如图: 例1.(09 山东)设P是三角形ABC所在平面内一点,,则 A. B. C. D. 例2.(13四川)在平行四边形ABCD中,对角线AC与BD交于点O, ,则. (3)多边形法则 2.向量的加法运算律:交换律与结合律 (二)向量的减法: 减法是加法的逆运算,A. (终点向量减始点向量) 在平行四边形中,已知以、为邻边的平行四边形中,分别为平行四边形的两条对角线,当时,此时平行四边形是矩形。 例1.已知,且,则=______ 例2.设点M是BC的中点,点A在线段BC外,BC=16,,则 向量的加减运算: 例1.(08辽宁)已知、是平面内的三个点,直线上有一点,满足CB(→)+2AC(→)=0,则OC(→)=______ A.2OA(→)-OB(→) B.—OA(→)+2OB(→) C. OA(→)—OB(→) D. —OA(→)+OB(→) 例2.(15课标全国I)设D是三角形ABC所在平面内一点,,则______ A. B. C. D. 例3.(12全国)在中,边上的高为,CB(→)=a, CA(→)=b,ab=0, ,则AD(→)=______ 例4.(10全国)在中,点在边上,平分,若CB(→)=a, CA(→)=b,,则CD(→)=________ 例5.在中,设为边的中点, 为边的中点,若BE(→)=AB(→)+AC(→),则+=___ 例6.(15北京理)在中,点满足,若,则 例7.(13江苏)设、分别是的边、上的点,若,若DE(→)=AB(→)+AC(→)(,为实数),则+=_________ 例8.(12东北四市一摸)在中,设为边的中点,内角的对边,若AC(→)+PA(→)+PB(→)=0,则的形状为________ (三)实数与向量的积: 1.定义:实数与非零向量的乘积是一个向量,它的长度是__________.它的方向是_________________________________________________________.当时,_______ 2.数乘向量的几何意义是把向量同方向或反方向扩大或缩小。 3.运算律:设、是任意向量,是实数,则实数与向量的积适合以下运算: 4.向量共线的判断:(平行向量的基本定理) ①如果,则;若,,则存在唯一的实数,使得. ②若、是两个不共线的非零向量,则它们共线的充要条件是存在两个均不是零的实数,使________. ③若,不共线,,则在有意义的前提下, 例1.(15课标全国II)设向量若、是两个不平行的向量,向量与平行,则 例2.(09湖南)对于非零向量“”是“”的___ A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D. 既不充分也不必要条件 例3.(12四川)设a,b都是非零向量,下列四个条件中,使成立的充分条件是 A.a=-b B.a∥b C.a=2b D.a∥b且|a|=|b| 5. 单位向量 给定一个向量,与同方向且长度为1的向量叫做的单位向量,即_______________ 重要结论: 已知,为定点,为平面内任意一点. ①PA(→)+PB(→)+PC(→)=0_______________________________________________. ②若OP(→)=OA(→)+OB(→)+OC(→),则为__________________________ ③若OP(→)=OA(→)+(AB(→)+AC(→)),,则点的轨迹__________________. ④若OP(→)=OA(→)+_________,,则点的轨迹通过的内心 ⑤若__________________________,则点的轨迹是的外心 ⑥若__________________________,则点的轨迹是的垂心 例1.(10湖北)在中,点满足MA(→)+MB(→)+MC(→)=0,若存在实数,使得AB(→)+AC(→)=AM(→),则=________. 例2.在中,重心为G,若,则 例3.在中,重心为G,若,则 三、平面向量的基本定理 (一)平面向量基本定理内容: 如果、是同一平面内的两个不共线的向量,那么对这一平面内的任一向量,有且只有一对实数,使__________________,其中、是一组基底,记作_______._____________叫做向量关于基底的分解式。平面向量基本定理是向量正交分解的依据,是向量坐标运算的基础。 注意:只要是不共线的两个向量都可以作为基底,因为零向量与任一向量都平行,所以零向量一定不能作为基底;基底不唯一;任一向量可以由一组基底来表示,但表示方法是唯一的。 例1.(14福建)在下列向量组中,可以把向量表示出来的是______ A. B. C. D. 例2.(09安徽)在平行四边形ABCD中,E,F分别是CD,BC的中点,若 ,则 (二) 平面向量基本定理与向量共线条件的综合应用 设是直线上两点,是直线外一点,对于直线上任意一点,存在,使___________________________成立.反之,满足上式的点在直线上. 特别地,当为的中点时,则_________________________. 例1.已知、是平面内的三个点,线段的延长线上有一点,满足3AC(→)+CB(→)=0 则OC(→)=____ A.3OA(→)-2OB(→) B.—2OA(→)+3OB(→) C. OA(→)—OB(→) D. —OA(→)+OB(→) 例2.数列是等差数列,其前项和为,若平面上的三个不共线的向量OA(→)、OB(→)、OC(→)满足OB(→)=OA(→)+OC(→),且三点共线,则 例3.已知向量不共线,且AB(→)=,AD(→),若三点共线,则实数应满足的条件_____ A. B. C. D. 例4.(07江西)如图,在中,设为边的中点,过点的直线交直线、于不同两点.若AB(→)=AM(→),AC(→)=AN(→),则+=___的最大值为_______ 例5.在中,设为边的任意点,为中点,AN(→)=AB(→)+AC(→),则+=_____. 例6.在中,设为边的中点,为中点,AN(→)=AB(→)+AC(→),则+=_____. N M O C B A A B M D G N C A 例7.如图,在中,设为边的中点,为中点,过任作一条直线分别交、于两点,若AM(→)=AB(→),AN(→)=AC(→),试问是否为定值? 四、平面向量的正交分解与向量的直角坐标运算: (一)向量的正交分解与向量的直角坐标 1.向量的垂直:如果两个向量的基线互相垂直,那么这两个向量互相垂直; 2.向量的正交分解:如果基底的两个基向量互相垂直,则称这个基底为正交基底,在正交基底下分解向量,叫做正交分解。 3.在平面直角坐标系下,分别取与x轴,y轴方向相同的两个单位向量作为基底,对于平面内任一向量,有且只有一对实数x,y,使得.有序数对叫做的坐标,记作 注意:(1)每一个向量都可以用一对有序实数对来表示,向量有代数法和几何法两种表示。 (2)符号有了双重的意义,既可以表示固定的点,又可以表示向量;平面向量的坐标只与始点和终点坐标有关,只有点始点在原点时,向量的坐标才与终点的坐标相等。 (二)向量的坐标运算 1.若,则. 2.若,则AB(→)=_______________|AB(→)|=__________________ 3.若,则 4.若,,则有________________. 5.三角形ABC的重心坐标公式为____________________________ 五、平面向量的数量积: 1.平面向量数量积的定义 ①向量的夹角 已知两个非零向量,过点作,则________),叫作向量的夹角. 当________________时,与垂直,记作_________. 当________________时,与平行或共线.注意:理解什么是两向量的夹角?以及两向量夹角的范围。 ②向量的数量积 已知两个非零向量与,它们的夹角为,则把_____________叫做向量的数量积(内积),记作__________________. ③规定=0 ④向量数量积的几何意义 _______________________________________________________. 2.向量数量积的性质 设是非零向量,是与方向相同的单位向量,是与的夹角,则 ① ②_______________________ ③当同向时,.当反向时, 特别地, ④ ⑤ 3.向量的数量积的运算律: 注意:向量的数量积无______律,无_______律. 4.数量积的坐标运算 ①若,则 ②若,则 ③若,则的充要条件为______________ ④,则的充要条件为______________ ⑤求角问题:若非零向量,是的夹角,则 注意:向量有几何法和坐标法两种表示,它的运算也有两种方式即基于几何表示的几何法和基于坐标表示的代数法. 典型例题(一)向量数量积的几何运算,注意两个向量的夹角,利用平面向量的基本定理选好基底 例1.对任意向量,下列关系式中不恒成立的是______ A. B. C. D. 例2.已知向量,满足,,则向量的夹角为______ 例3.(11江西)已知,则的夹角为______ 例4.(13全国)已知两个单位向量,的夹角为,,若 则 例5.(13江西)设、为单位向量,与的夹角为,若,则向量在方向的射影为___ 例6.已知向量,满足,,则 例7.(14课标全国)已知A,B,C为圆O上的三点,若,则与的夹角为_____ 例8.(10湖南)在直角三角形中,则AB(→)AC(→)=_____ 例9.(15湖北)已知向量,则 例10.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP =3,则 例11.在三角形中,,为边的三等分点, 则AE(→)AF(→)=_____ 例12.(12天津)已知三角形为等边三角形,,点满足AP(→)=AB(→), AQ(→)=(1-)AC(→),,若BQ(→)CP(→)=,则 例13.(13山东)已知向量AB(→)与AC(→)夹角,,AP(→)=AB(→)+AC(→),且AP(→)BC(→)=0 则实数的值____ 例14.(13天津)在平行四边形中,,为边的中点,若AC(→)BE(→)=1,则的长为___ 例15.已知夹角为,,在三角形中,AB(→), AC(→),为边的中点,则 例16. AD与BE分别是的中线,若AD=BE=1,的夹角为,则AB(→)AC(→)=_____ 例17.(15四川)设四边形ABCD为平行四边形,AB=6,AD=4,若M,N满足,则 例18.(12浙江)在三角形中,点为的中点,则AB(→)AC(→)=_____ 例19.(09陕西)设为边的中点,,点在上,满足AP(→)=2PM(→),则PA(→)(PB(→)+PC(→))=_______ 例20. 设是三角形的外心,,则AD(→)(AB(→)-AC(→))=___ 例21.在三角形中,已知,点是的垂直平分线上任一点,则 AB(→)OP(→)=_____ 例22.已知是三角形的外心,若,则AO(→)BC(→)=_____ 例23.若三角形内接于以为圆心,1为半径的圆,3OA(→)+4OB(→)+5OC(→)=0,则OC(→)AB(→)=___ 例24.已知非零向量,在上有极值,则的取值范围为___ 例25.(10全国)已知圆的半径为1,为该圆的两条切线,为切点, 则PA(→)PB(→)的最小值为___ 典型例题(二):对于有明显的直角关系的向量问题------建立平面直角坐标系(与线性规划问题联系),向量的几何法与代数法的转化 例1.(13湖北)已知点A(—1,1),B(1,2)C(—2,—1),D(3,4),则向量AB(→)在CD(→)方向上的投影为_____ 例2.(12重庆)设,向量,则 例3.已知点,是坐标原点,点的坐标满足,设为OA(→)在OP(→)上的投影,则的取值范围_____ 例4.(13福建)在四边形中,AC(→)=(1,2), BD(→)=(-4,2),则四边形的面积为_____ 例5.(09湖南)如图,两块斜边长相等的直角三角板在一起,若AD(→)=AB(→)+AC(→),则=____,=_____ 例6.已知,,点在内,OC(→)OA(→)=0,若OC(→)=OA(→)+OB(→),,则 例7.(09天津)若等边三角形的边长为,平面上一点,满足CM(→)=CB(→)+CA(→), 则MA(→)MB(→)=________. 例8.(11天津)已知直角梯形中,,是腰上的动点,则|PA(→)+3PB(→)|的最小值为_______ 例9.(12江苏)如图,在矩形中,,点为的中点,点在边上,若AB(→)AF(→),则AE(→)BF(→)=_______ 例10.在直角三角形中,点是斜边的中点,点是线段的中点,则 例11.(13全国)已知正方形的边长为2,为的中点,则AE(→)BD(→)=_______ 例12.(13重庆)在平面上,,若,则的取值范围是_________ 例13.(12北京)已知正方形的边长为1,点为边上的动点,则DE(→)CB(→)=_______ DE(→)DC(→)的最大值为_______ 例14.平面上三个向量OA(→)、OB(→)、OC(→),满足OA(→)OB(→)=0则CA(→)CB(→)的最大值为_______ 例15.已知三角形中,,点是内部或边界上一动点,是边的中点,则AN(→)AM(→)的最大值为______ 例16.(15福建)已知,若点P是三角形所在平面内一点,且,则的最大值为_________ 例17.(09全国)设是a,b,c单位向量,ab=0,则(a--c) (b--c)的最小值为_____ 例18.(13湖南)已知a,b是单位向量,ab=0,若向量c满足|c--a--b|=1,则|c|的取值范围______ 例19.(11辽宁)若a,b,c单位向量,ab=0, (a--c) (b--c),则|a+b--c|的最大值为____ 例20.(11全国)设向量a,b,c,满足|a|=|b|=1, ab=,,则|c|的最大值为_______ 例21.(14安徽)在平面直角坐标系xOy中,已知a,b是单位向量,ab=0,若Q点满足,曲线,区域,若为两段分离的曲线,则________ A. B. C. D. 典型例题(三):注意数量积与三角形面积、余弦定理、正弦定理的联系与三角函数的联系,与均值不等式的联系 例1.(10辽宁)平面上三点不共线,设OA(→),OB(→),则的面积等于___ A. B. C. D. 例2.在中,,AB(→)AC(→),则 例3.(11浙江)若平面向量,以向量为邻边的平行四边形面积为,则夹角的取值范围为_________ 例4.(14辽宁)在中,已知,, ①求的值; ②求 例5.设,为向量,若与的夹角为,与的夹角为,则 例6.在三角形ABC中,若,则的最小值为________ 例7.在三角形ABC中,AB=2,AC=4,若点P为三角形ABC的外心,则 例8.设是内部一点,且OA(→)+OC(→)=-2OB(→),则与的面积之比为_____ 例9.设是内部一点,且OA(→)+3OC(→)=-2OB(→),则与的面积之比为_____ 例10.已知向量与,,其中 ⑴求证: ⑵设函数,求的最大值和最小值 例11.(09上海)已知的角所对的边分别为,设向量,, ⑴若,求证:为等腰三角形 ⑵若,,求的面积 12- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三高 平面 向量 题型 总结 经典
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文