初中数学优秀说课稿教案大集合.pdf
《初中数学优秀说课稿教案大集合.pdf》由会员分享,可在线阅读,更多相关《初中数学优秀说课稿教案大集合.pdf(114页珍藏版)》请在咨信网上搜索。
初中数学优秀说课稿大集合 全部说课稿目录16.3分式方程解法说课稿17.2反比例函数说课稿18.1探索勾股定理第一课时说课稿18.1勾股定理说课稿勾股定理说课稿18.2勾股定理的逆定理说课稿19.1 平行四边形的说课稿19.2.2菱形(1)定义与性质说课稿20.2数据的波动说课稿(第一课时)除法说课稿矩形(第一课时)说课稿实际问题与反比例函数(第三课时)教案说明平行四边形的判定(1)说课稿分式的意义说课稿“形的判定”说课稿菱形(第2课时)16.3分式方程解法说课稿课标指出:“数学教学是数学活动的教学,是师生之间、学生之间交往 互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织 者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历 数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师 生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发 展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在 设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的 生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问 题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。四、教师对教学目标,难点,重点把握要恰当、具体。数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中 才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确 定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算 器和计算机都是供学生选择的方式,都可以达到算出结果的目的。一、设计思想:数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱 发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生 活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰 虽和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数 学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与 尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与 探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且 能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动 听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合课标精神。网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高二、背景分析:(四)教学媒体:Mid ea-Class纯软多媒体教学网 儿何画板三、教学目标:知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能 产生增根的原因,掌握解分式方程验根的方法。过程方法:通过经历实际问题一列分式方程一探究解分式方程的过程,体会 分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运 用知识解决问题的成功体验,树立学好数学的自信心。教学重点:解分式方程的基本思路和解法。(三)教学方式:自学导读一同伴互助一精讲精练识,渗透类比转化思想。用意一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应通过经历实际问题一列分式方程一探究解分式方程的过程,体会分式方程是行的,为后面学习可化为一元二次方程的分式方程打下基础。本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进(二)内容分析:学课,学习数学的兴趣较浓。本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数较熟练,对于网络环境下的学习模式已适应。验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实十六章:分式内容是义务教育课程标准实验教科书(人民教育.)数学八年级下册第(一)学情分析:教学难点:理解分式方程可能产生增根的原因。设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。四、板书设计:a不是分式方程的解(二)学习方法:类比与转化教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比 用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与 传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。五、教学过程:活动1:创设情境,列出方程设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体 现了教学评价之美-激励启迪。设计说明:通过经历实际问题一列分式方程,体会分式方程是一种有效描述 现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生 的探究欲与学习热情,为探索分式方程的解法做准备。活动2:总结定义,探究解法使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探 究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题 的能力及合作的意识。教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和 16.2分式的运算时,儿乎每一节课都运用类比的思想-分式与分数类比和进行算 法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要 遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学 生实际认知水平,不要任意拔高。三、拓展内容要适量,不耍信息过载。活动3:讲练结合,分析增根活动5:布置作业,深化巩固(略)17.2反比例函数说课稿一、教材分析:反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以 后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过 程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生 抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。二、教学目标分析根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过 程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比 例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主 动探索。因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出 反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以 及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇 于探索的精神。三、教学重点难点分析本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;难点则是如何抓住特征准确画出反比例函数的图象。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课 件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比 例函数的性质。四、教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题 教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取 知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生 充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂 上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究讨 论交流总结”的学习活动过程,同时在教学中,还充分利用多媒体教 学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动 手、动口、动眼、动脑,培养学生直觉思维能力。五、学法指导本堂课立足于学生的“学。要求学生多动手,多观察,从而可以帮助 学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利 用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参 与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。六、教学过程(一)复习引入反函数解析式练习1:写出下列各题的关系式:(1)正方形的周长C和它的一边的长a之间的关系(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系(3)矩形的面积为10时,它的长x和宽y之间的关系(4)王师傅要生产100个零件,他的工作效率x和工作时间 t之间的关系问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函 数?问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反 比例函数的定义打下基础。问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点 吗?通过问题2米引出反比例函数的解析式丁=X(左w 0),请学生对比正 比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。例题1:已知变量y与x成反比例,且当x=2时,y=9(1)写出y与x之间的函数解析式(2)当x=3.5时,求y的值(3)当y=5时,求x的值通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数 的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数 法”,先设反比例函数为y=&(左。0),再把相应的x,y值代入求出k,k值的 确定,函数解析式也就确定了。课堂练习:已知X与y成反比例,根据以下条件,求出y与X之间的 函数关系式(1)x=2,y=3(2)x=,y=-42通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的 学习情况做一个简单的反馈。(二)探究学习1函数图象的画法问题3:如何画出正比例函数的图象?通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线 三个步骤,为学习反比例函数图像的画法打下基础。问题4:那反比例函数的图象应该怎样去画呢?在教学过程中可以引导学生仿照正比例函数图象的的画法。设想的教学设计是:(1)引导学生运用在画正比例函数图象中所学到的方法,分 小组讨论尝试,采用列表、描点、连线的方法画出函数y=和 Xy=-的图象;x(2)老师边巡视,边指导,用实物投影仪反映一些学生在函 数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;(3)随后老师在黑板上演示画好反比例函数图像的步骤,展 示正确的函数图象,引导学生观察其图象特征(双曲线有两个分 支)。初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会 在下面几个环节中出错:(1)在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出X 不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量X的取值可以选取绝对值相等而符 号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以 简化计算的手续,又便于在坐标平面内找到点。(2)在“连线”这一环节学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而 在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后 学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注 意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到 较多的“点。画出曲线。从而引导学生画出正确的函数图象。(3)图象与x轴或y轴相交在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学 习函数的性质打下基础。需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进 一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一 次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象 的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。巩固练习:画出函数9和y=的图象X X通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在 一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函 数图象的准确性。(三)探究学习2函数图象性质1、图象的分布情况问题5:请大家回忆一下正比例函数y=的分布情况是怎么样的呢?提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的 分布情况打下基础。问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分 支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例 函数的分布情况,给学生充分考虑的时间;(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意 输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察 及对比,对反比例函数图象的分布与k的关系有一个直观的了解;(3)组织小组讨论来归纳出反比例函数的一条性质:当k0时,函数 图象的两支分别在第一、三象限内;当k0时,自变量x逐渐增大时,y的值则随着逐渐 减小;当k0,分别比较在第 三象限x=-2,第一象限x=2时的y的值的大小,则以上性质是否依然成 立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在 每一个象限内,才有以上性质成立。问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什 么?在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过 代数的方法分析反比例函数的解析式丁=幺(左。0),由分母不能为零,得x X不能为零。由kWO,得y必不为零,从而验证了反比例函数的图象。当两 个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。(四)备用思考题1、反比例函数=的图象在第一、三象限,求a的取值范围2、y=(m-l)x2m+3(1)当m为何值时,y是x的正比例函数(2)当m为何值时,y是x的反比例函数(五)小结:1、通过列表的形式,引导学生小结反比例函数的性质名称解析式图像图象分布函数变化情况k0k0k0正比例函数y二kx(k w0)是一条 经过原点和(l,k)的直 线、一二象限、四象限y随X的增大 而增大y随X的增大 而减小反比k.y=一(左?X双曲线、二y随y随2、请学生小结一下我们在画图象的过程中需要大家注意的例函数、二象限、四象限X的增大而减小X的增大而增大地方(1)在列表过程中,x的值不能取0;取值可以由原点向 两侧取相反数;可以适当的多取一些点,方便连线(2)反比例函数图象是光滑曲线(3)函数图象只能是无限逼近y轴和x轴,永远不会和 两轴相交(六)作业基础题:A册习题21.5提高题:同步72页第14,15,16题18.1探索勾股定理第一课时说课稿一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节探索 勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三 角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有 着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形 有进一步的认识和理解。(-)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理 的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到 一般的思想.情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的 成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简 单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让 学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他 们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面 积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较 高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境一一 建立模型一一解释应用-拓展巩固”的模式,选择引导探索法。把教学过程转 化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习 方式,使学生真正成为学习的主人.三、教学过程设计1.创设情境,提出问题2.实验操作,模型构建3.回 归生活,应用新知4.知识拓展,巩固深化5.感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏 勾股定理数形图1955年希腊发行 美丽的勾股树2002年国际数学 的一枚纪念邮票大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队 员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员 能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产 生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.二、实验操作模型构建1.等腰直角三角形(数格子)2.一般直角三角形(割补)问题一:对于等腰直角三角形,正方形I、II、III的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会 数形结合的思想.问题二:对于一般的直角三角形,正方形I、II、m的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析 问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概 括的能力,同时发挥了学生的主体作用,体验了从特殊-般的认知规律.三.回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.四、知识拓展巩固深化基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个 体差异,关注学生的个性发展.知识的运用得到升华.基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你 可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的 屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你 同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根 长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流 的方式,拓展学生的思维、发展空间想象能力.五、感悟收获布置作业:这节课你的收获是什么?作业:1、课本习题2.1 2、搜集有关勾股定理证明的资料.板书设计 探索勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么a2+6=e2设计说明:1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让 学生体会数形结合及从特殊到一般的思想方法.2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.18.1勾股定理说课稿一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础 上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理 之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的 计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分 析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活 地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通 过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想 感情,培养他们的民族自豪感和钻研精神。二、教学重点:勾股定理的证明和应用。三、教学难点:勾股定理的证明。四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和 学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲 望和兴趣,组织学生活动,让学生主动参与学习全过程。切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理 解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的 成功感受,从而激发学生钻研新知的欲望。五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起 学生学习兴趣,激发学生求知欲。2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进 入乐学状态。3、板书课题,出示学习目标。(二)初步感知 理解教材教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意 识,锻炼学生主动探究知识,养成良好的自学习惯。(三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股 定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?(3)如何运用勾股定理?是否还有其他形式?这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作 评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致 意见,最终解决疑难。(四)巩固练习强化提高1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结 合,以免引起学生的疲劳。2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对 例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况 可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采 取全班讨论的形式予以解决,以此突出教学重点。(五)归纳总结练习反馈引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独 立完成。本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教 学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生 敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。勾股定理说课稿各位专家领导,上午好:今天我说课的课题是勾股定理一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二 节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的 基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的 定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形 的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操 作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直 观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。(二)三维教学目标:1.【知识与能力目标】1.理解并掌握勾股定理的内 容和证明,能够灵活运用勾股定理及其计算;2.通过观察分析,大胆猜想,并探 索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。2.【过程 与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到般的思想方法。3.1情感态度与 价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久 文化的思想感情,培养学生的民族自豪感和钻研精神。(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基 础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运 用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。【突破措施】:1.创设情景,激发思维:创设生动、启发性的问题情景,激发 学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;2.自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老 师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成 生动的课堂环境;3.张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发 言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组 的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小 组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。二、教法与学法分析【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学 中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级 学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊 到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理 念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问 题解决-课堂小结-布置作业”六个方面。【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合 作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能 力,使学生真正成为学习的主人。三、教学过程设计(-)创设情景多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到 每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生 将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就 会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映 了“数学来源于生活”,学习数学是为更好“服务于生活”。(-)动手操作1.课件出示课本P99图19.2.1:观察图中用阴影画出的三个正方形,你从中能够得出什么结论?学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行 描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通 过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等 于斜边的平方,即当N C=90,AC=BC时,则AC2+BC2=AB2。这样做有利于学生 参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形 结合的思想。2.紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情 况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P10 0 图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是 求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整 数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动 手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观 察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。3.再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样 设计的目的是让学生体会到“从特殊到 般”的情形,这样归纳的结论更具有 般性。(三)归纳验证【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一 般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学 生在整个学习过程中感受学数学的乐趣,使学生学会“文字语言”与“数学语 言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主 体作用,真正获取知识,解决问题。【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一 般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。(四)问题解决1.让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的 快乐。2.自学课本P10 1例1,然后完成P10 2练习。(五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发 言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。2.教师用多媒体介绍“勾股定理史话”周髀算径:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。康熙数学专著勾股图解有五种求解直角三角形的方法,积求勾股法 是其独创。目的是对学生进行爱国主义教育,激励学生奋发向上。(六)布置作业课本P10 4习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方 面是让学生进一步体会定理与实际生活的联系。以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这 样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!18.2勾股定理的逆定理说课稿一、教材分析:(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个 直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中 几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之 一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算 的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本 章的重要内容之一。课标要求学生必须掌握。(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我 确定了本节课的教学目标。知识技能:1、理解勾股定理的逆定理的证明方法并 能证明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是 不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展 与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结 合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中 的作用,并能运用勾股定理的逆定理解决相关问题。情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数 与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求 根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想 至U,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就 是解决它的关键,这样就确定了本节课的重点、难点和关键。重点:勾股定理逆定理的应用 难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作 交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑 了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的 联系。(二)、创设问题情境一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不 好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距 离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为 什么?。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了 我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学 就在身边。(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体 实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定 理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条 件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照 已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突 破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的 直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是 直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数 学模型。接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作 出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象 思维的转化,同时学生亲身体会了动手操作一一观察猜测一一探索一一论证 的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲 切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自 我创造的快乐。在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充 分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。(四)、组织变式训练本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生 口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个 弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求 更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三 的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我 还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时 了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。(五)、归纳小结,纳入知识体系本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是 注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告 诉同学今天的勾股定理逆定理是同学们通过自己亲- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 优秀 说课稿 教案 集合
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【曲****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【曲****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【曲****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【曲****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文