平行四边形的性质(二).doc
《平行四边形的性质(二).doc》由会员分享,可在线阅读,更多相关《平行四边形的性质(二).doc(7页珍藏版)》请在咨信网上搜索。
第六章 平行四边形 1. 平行四边形的性质(二) 西安市高新一中初中校区 邹国胜 一、学生起点分析 学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用,因此对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础。 二、学习任务分析 本节的学习任务主要是进一步掌握平行四边形的性质,因此教学目标为: 1.进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质; 2.在应用中进一步发展学会合情推理能力,增强学生逻辑推理能力,使学生掌握说理的基本方法。 3.通过解决问题,探究并归纳:“平行线间的距离处处相等”这一性质。 教学重点:平行四边形性质的应用 教学难点:发展合情推理及逻辑推理能力 教学方法:启发诱导法,探索分析法 三、教学过程设计 本节课分5个环节 第一环节 回顾思考,引入新课 第二环节 探索发现,灵活运用 第三环节 观察分析,理性升华 第四环节 巩固反馈,总结提高 第五环节 评价反思,目标回顾 第一环节 回顾思考,引入新课 活动内容: 以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。 1.平行四边形都有哪些性质? 2.回顾思考 选择题 (1)平行四边形ABCD中,∠A比∠B大20°,则∠C的度数为( ) A.60° B.80° C.100° D.120° (2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( ) A.5cm B.15cm C.6cm D.16cm (3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有 参考答案: 1. C. 2. A. 3.4对. 活动目的: 1.通过(1)~(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。 活动效果: 能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。 第二环节 探索发现,灵活运用 活动内容: 一、 探索问题1 在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢? A.(学生思考、交流)得出:平行四边形的对角线互相平分。 B.请尝试证明这一结论 已知:如图6-4,平行四边形ABCD的对角线AC、BD相交于点O. 求证:OA=OC,OB=OD. 证明: ∵四边形ABCD是平行四边形 ∴ AB=CD AB//DC ∴ ∠BAO=∠DCO ∠ABO=∠CDO ∴ △AOB≌△COD ∴ OA=OC,OB=OD. 你还有其他的证明方法吗,与同伴交流。 活动目的: 通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。 活动效果及注意: 因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四边形可得出其对角线互相平分。 二、[练一练] 活动内容 探索问题2 例1.如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F. 求证:OE=OF. A.议论交流 B.师生共析归纳 解:∵四边形ABCD是平行四边形 ∴ AD=CB AD//BC OA=OC ∴ ∠DAC=∠ACB 又∵∠AOE=∠COF ∴△AOE≌△COF ∴OE=OF 探索问题2 如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ∠ADB=900,OA=6,0B=3.求AD和AC的长度. 解: ∵四边形ABCD是平行四边形 ∴OA=OC=6 OB=OD=3 ∴AC=12 又∵∠ADB=900 ∴在Rt△ADO中,根据勾股定理得 OA2=0D2+AD2 ∴AD=3√3 活动目的: 通过练一练的两个问题的训练,进一步巩固平行四边形的性质,并学会应用。 第三环节 观察分析,理性升华 例2 已知,如图,在平行四边形ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于M,N,交BA,BC于点P,点B,你能说明MQ=NP吗? A.学生独立观察分析 B.交流探索 C.师生共析小结 解:∵四边形ABCD是平行四边形 ∴AD//BC,AB//CD 即AM//CQ 又∵AC//MN 即AC//MQ ∴由平行四边形定义得四边形MQCA是平行四边形 ∴MQ=AC 同理 NP=AC ∴MQ=NP 小结:利用平行四边形可以证明两线段相等 活动目的: 由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发展,本环节让学生就用的结论进行说理和推理,实验理性升华,培养语言表达能力。 第四环节 巩固反馈,总结提高 活动内容: 一、通过练习,进一步应用平行四边形性质,达到掌握的程度。 1.在平行四边形ABCD中,∠A=150°,AB=8cm,BC=10cm,求平行四边形ABCD的面积。 A.学生议论 B.师生共评 解:过A作AE⊥BC交BC于E, ∵四边形ABCD是平行四边形 ∴AD//BC ∴∠BAD+∠B =180° ∵∠BAD =150° ∴∠B =30° 在Rt△ABE中,∠B =30° ∴AE =1/2AB=4 ∴平行四边形ABCD的面积=4×10=40cm2 小结:平行四边形的问题,可以转化为三角形,问题解决。 活动目的: 由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发,本环节让学生应用的结论进行说理和推理实理理性升华,培养语言表达能力。 二、计算题 1.课本随堂练习 2.平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。 解: ∵四边形ABCD是平行四边形 ∴AB=CD,AD=BC OA=OC,OB=OD 又∵OA=3cm, OB=4cm, AB=5cm ∴AC=6cm BD=8cm CD=5cm ∵△AOB中,32+42=52,即AO2+BO2=AB2 ∴∠AOB =90° ∴AC⊥BD ∴Rt△AOD中,OA2+OD2=AD2 ∴AD=5cm,BC=5cm, 答:这个平行四边形的其它各边都是5cm,两条对角线长分别为6cm和8cm。 活动效果: 通过一组训练,达到了学生对平行四边形性质的掌握。 第五环节 评价反思,目标回顾 活动内容: 1.本节课你有哪些收获?你能将平行四边形的性质进行归纳吗? 2.本节通过实例,你如何理解“两条平行线间距离”? 3.利用平行四边形可以解决哪些问题? 4.你能给自己和同伴本节课一个评价吗? 活动目的: 通过师生反思评价,实理知识的系统归纳,对知识和方法进行总结,并通过作业和考题全面巩固平行四边形性质。 5.布置作业:习题6.2 1,2,3, 4 师生共勉:把一件平凡的事情做好,就不平凡,把一件简单的事情做好就不简单。 7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文