十二章-全等三角形.doc
《十二章-全等三角形.doc》由会员分享,可在线阅读,更多相关《十二章-全等三角形.doc(48页珍藏版)》请在咨信网上搜索。
第十二章 全等三角形 第十二章全等三角形 单元(章)教学计划 1、地位与作用: 本章是在七年级学过线段、角、相交线、平行线以及三角形的有关知识的基础上,进一步学习全等三角形,全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明,让学生证明三角形两条对角线的交点到三角形三边的距离相等,并进一步让学生得出这个交点在第三条角平分线上,即三角形的三条角平分线交于一点。这也为学生今后在“圆”一章学习内心作好了准备,也为今后更广泛的应用数学建模的思想方法奠定基础,具有在代数学中承上启下的作用;渗透建立数学模型,分类讨论等数学思想。 2、目标与要求: 知识与技能 (1)了解全等三角形概念和性质,能够准确地辨认全等三角形中的对应元素。 (2)探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。 (3)了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。 过程与方法 (1)学习全等三角形的概念和性质,探索全等三角形的条件和性质。 (2)掌握怎样找全等三角形的对应元素,能结合一些具体问题,依照全等三角形的性质,完成线段和角的相等的推理,线段鱼角的计算问题。 (3) 利用三角形全等的条件及角的平分线的性质,初步掌握经过一步一步的推理,最后证明结论正确的方法。 情感态度与价值观 把生产实际问题抽象转化为数学问题,渗透转化思想,培养抽象、概括、分析问题和解决问题的能力。 3、重点与难点: 重点是:三角形全等的条件,证明的基本过程,掌握证明的格式。 难点是:理解证明的基本过程,掌握用综合法证明的格式。 4、教法与学法: 根据教学内容、教学目标和学生的认知水平,主要采取教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.教学过程中,创设适当的教学情境,证明的方向明确,过程简单,书写容易规范化,引导学生独立思考、共同探究。 5、活动步骤: 一、创设情境、导入新课; 二、探索新知 合作交流; 三、应用迁移,提高巩固 练习;四、总结反思,拓展升华;五、作业布置 6、时间安排: 11.1全等三角形 1课时 11.2全等三角形的判定 5课时 11.3角的平分线的性质 2课时 数学活动 复习与小结 2课时 12.1全等三角形 【教学目标】 知识与技能目标: 掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的概念及表示方法。知道全等三角形有关概念,掌握寻找全等三角形中对应元素的基本方法。掌握全等三角形的性质。通过演译变换两个重合的三角形,呈现出它们之间各种不同的位置关系,从中了解并体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。 过程与方法目标: 围绕全等三角形的对应元素这一中心,通过观察、操作、想象、交流、等展开教学活动。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。运用多媒体演示图形的位置变化,使学生认识到图形具有相对运动能力。变换两个重合的三角形的位置,使它们呈现各种不同的位置关系,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。 情感与态度目标: 学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。给学生以充分的思考时间,有利于不同层次学生的学习。 教学重点:全等三角形的性质 教学难点:寻找全等三角形中的对应元素 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学教程】 一、创设情境,引入新课 1.电脑显示 问题:各组图形的形状与大小有什么特点? 一般学生都能发现这两个图形是完全重合的。 归纳:能够完全重合的两个图形叫做全等形。 2.学生动手操作 ⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。 ⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等? 3.板书课题:全等三角形 定义:能够完全重合的两个三角形叫做全等三角形 “全等”用“≌”表示,读着“全等于” 如图中的两个三角形全等,记作:△ABC≌△DEF 二、 探究 全等三角形中的对应元素 1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢? 2.学生讨论、交流、归纳得出: ⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。 ⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。 全等三角形的性质 1.观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边 有什么关系?对应角呢? 全等三角形的性质: 全等三角形的对应边相等. 全等三角形的对应角相等. 2.用几何语言表示全等三角形的性质 如图:∵∆ABC≌ ∆DEF ∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等) ∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等) 探求全等三角形对应元素的找法 1.动画(几何画板)演示 (1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合? 归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法. (2)说出每个图中各对全等三角形的对应边、对应角 归纳:从运动角度可以很轻松解决找对应元素的问题.可见图形转换的奇妙. 2. 动画(几何画板)演示 图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系.并说出其中的对应关系. C D E ⑴ ⑵ ⑶ 3. 归纳:找对应元素的常用方法有两种: (1)从运动角度看 a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素. b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素. c.平移法:沿某一方向推移使两三角形重合来找对应元素. (2)根据位置元素来推理 a.有公共边的,公共边是对应边; b.有公共角的,公共角是对应角; c.有对顶角的,对顶角是对应角; d.两个全等三角形最大的边是对应边,最小的边也是对应边; e.两个全等三角形最大的角是对应角,最小的角也是对应角; 三、课堂练习 练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝, 你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ? 练习2.△ABC≌△FED ⑴写出图中相等的线段,相等的角; ⑵图中线段除相等外,还有什么关系吗?请与同伴交 流并写出来. 四、课堂小结 通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,探索了找两个全等三角形对应元素的方法,并且利用性质解决简单的问题。 找对应元素的常用方法有三种: (一)从运动角度看 1.平移法:沿某一方向推移使两三角形重合来找对应元素. 2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素. 3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素. (二)根据位置元素来推理 1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边. 2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. (三)根据经验来判断 1. 大边对应大边,大角对应大角 2. 公共边是对应边,公共角是对应角 五、课堂作业 教科书习题12.1第3、5、6 题. 六、板书设计 12.1 全等三角形 一、概念 二、全等三角形的性质 三、性质应用 例题 四、小结:找对应元素的方法 运动法:翻折、旋转、平移. 位置法:对应角→对应边,对应边→对应角. 经验法:大边→大边,大角→大角.公共边是对应边,公共角是对应角。 12.2 三角形全等的判定 第1课时 【教学目标】: 知识与技能:掌握三角形全等的“边边边”的条件;了解三角形的稳定性. 过程与方法:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.通过对问题的共同探讨,培养学生的协作精神. 情感态度与价值观:让学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方法和享受良好的情感体验.让学生体验数学来源于生活,又服务于生活的辩证思想. 教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件. 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、创设情境,引入新课 [师]出示投影片一,回忆前面研究过的全等三角形. 已知△ABC≌△A′B′C′,找出其中相等的边与角. [生]图中相等的边是:AB=A′B、BC=B′C′、AC=A′C. 相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′. [师]很好,老师这里有一个三角形纸片,你能画一个三角形与它全等吗?怎样画? [生]能,先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等. [师]这位同学利用了全等三角形的定义来作图.请问,是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题. 出示投影片二 1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗? 2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做. ①三角形一内角为30°,一条边为3cm. ②三角形两内角分别为30°和50°. ③三角形两条边分别为4cm、6cm. 学生活动:分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示: 1.只给定一条边时: 只给定一个角时: 2.给出的两个条件可能是:一边一内角、两内角、两边. 可以发现按这些条件画出的三角形都不能保证一定全等. [师]那么,给出三个条件画三角形,你能说出有几种可能的情况吗? [生]四种可能.即:三内角、三条边、两边一内角、两内有一边. [师]在大家刚才的探索中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况. 二 、探究 出示投影片三 做一做: 已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 学生活动: 1.讨论作法. 2.比较、验证结果. 3.探究、发现、总结规律. 教师活动: 教师可参与到学生的制作与讨论中,及时发现问题,因势利导. 活动结果展示: 1.作图方法: 先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm. 2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的. 3.特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A/B/C/,使AB=A/B/、AC=A/C/、BC=B/C/.将△A/B/C/剪下,发现两三角形重合.这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”. [师]用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题. 三、例题 [例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架. 求证:△ABD≌△ACD. [师生共析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等. 证明:因为D是BC的中点 所以BD=DC 在△ABD和△ACD中 所以△ABD≌△ACD(SSS). 生活实践介绍:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等. 四、课时小结 本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题. 五、布置作业 必做题:教科书习题12.2第1、9 题; 选做题:如图,△ABC 和△EFD 中,AB =EF, AC =ED,点B,D,C,F 在一条直线上.(1)添加一个条件,由“SSS”可判定△ABC≌△EFD;(2)在(1)的基础上, 求证:AB∥EF 六、板书设计 12.1 三角形全等判定(1) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高 12.2 三角形全等的条件 第2课时 【教学目标】: 知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题. 过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明. 情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神. 教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件. 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、创设情境,导入新课 [师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗? [生]三内角、三条边、两边一内角、两内角一边. [师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”. (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况? [生]两种. 1.两边及其夹角. 2.两边及一边的对角. [师]按照上节方法,我们有两个问题需要探究. (二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗? 探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗? 学生活动: 1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果. 2.作好图后,与同伴交流作图心得,讨论发现什么样的规律. 教师活动: 教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程. 二 、探究 操作结果展示: 对于探究1: 画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A. 1.画∠DA/E=∠A; 2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC; 3.连结B/C/. 将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”). 播放课件: 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”. 如图,在△ABC和△DEF中, 对于探究2: 学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法: 1.画∠DB/E=∠B; 2.在射线B/D上截取B/A/=BA; 3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的. 播放课件: 也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件. 归纳总结: “两边及一内角”中的两种情况只有一种情况能判定三角形全等.即: 两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”) 三、应用举例 [例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么? [师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE. 在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等. 证明:在△ABC和△DEC中 所以△ABC≌△DEC(SAS) 所以AB=DE. 例2 某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块(如图),现要到玻璃店去配一块完全一样的玻璃.请问如果只准带一块碎片,应该带哪一块去,能试着说明理由吗? 利用今天所学“边角边”知识,带1号的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了. 四、练习 1. 已知: AD∥BC,AD= CB(图3). 求证:△ADC≌△CBA. 2.已知:AB=AC、AD=AE、∠1=∠2(图4). 求证:△ABD≌△ACE. 五、课堂小结 1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件. 2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理. 六、布置作业 教科书习题12.2第2、3、10题. 12.2 三角形全等判定(2) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高 七、板书设计 12.2三角形全等的判定 第3课时 【教学目标】: 知识与技能:理解三角形全等的条件:角边角、角角边.三角形全等条件小结.掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题. 过程与方法:经历探究全等三角形条件的过程,进一步体会操作、归纳获得数学规律的过程.掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题. 情感态度与价值观:通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神 教学重点:已知两角一边的三角形全等探究. 教学难点:灵活运用三角形全等条件证明. 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、创设情境,导入新课 1.复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边. (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:①定义;②SSS;③SAS. 2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? 二 、探究 [师]三角形中已知两角一边有几种可能? [生]1.两角和它们的夹边. 2.两角和其中一角的对边. 做一做: 三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 学生活动:自己动手操作,然后与同伴交流,发现规律. 教师活动:检查指导,帮助有困难的同学. 活动结果展示: 以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等. 规律: 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”). [师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A/B/C/,使∠A=∠A/、∠B=∠B/、AB= A/B/呢? [生]能. 学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解. [生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长. ②画线段A/B/,使A/B/=AB. ③分别以A/、B/为顶点,A/B/为一边作∠D A/B/、∠EB/A,使∠D/AB=∠CAB,∠EB/A/=∠CBA. ④射线A/D与B/E交于一点,记为C/ 即可得到△A/B/C′. 将△A/B/C′与△ABC重叠,发现两三角形全等. [师]于是我们发现规律: 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”). 这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? [师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法. 三、练习 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? 证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180° ∠A=∠D,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F 在△ABC和△DEF中 ∴△ABC≌△DEF(ASA). 于是得规律: 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”). 四、例题 [例1]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C. 求证:AD=AE. [师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可. 学生写出证明过程. 证明:在△ADC和△AEB中 所以△ADC≌△AEB(ASA) 所以AD=AE. [例2] 如图,小明、小强一起踢球,不小心把一块三角形的装饰玻璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗? [师]请同学们把三角形全等的判定方法做一个小结. 学生活动:自我回忆总结,然后小组讨论交流、补充. 有五种判定三角形全等的条件. 1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS) 4.角边角(ASA) 5.角角边(AAS) 推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径. 练习:图中的两个三角形全等吗?请说明理由. 五、课堂小结 我们有五种判定三角形全等的方法: 1.全等三角形的定义 2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS) 六、布置作业 习题12.2第4、5、11、12题. 12.2 三角形全等判定(3) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高 七、板书设计 12.2三角形全等的判定 第4课时 【教学目标】: 知识与技能:直角三角形全等的条件:“斜边、直角边”. 过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题. 情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神 教学重点:运用直角三角形全等的条件解决一些实际问题。 教学难点:熟练运用直角三角形全等的条件解决一些实际问题。 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、提出问题,复习旧知 1、判定两个三角形全等的方法: 、 、 、 2、如图,Rt△ABC中,直角边是 、 ,斜边是 3、如图,AB⊥BE于C,DE⊥BE于E, (1)若∠A=∠D,AB=DE, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (2)若∠A=∠D,BC=EF, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (3)若AB=DE,BC=EF, 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (4)若AB=DE,BC=EF,AC=DF 则△ABC与△DEF (填“全等”或“不全等” ) 根据 (用简写法) 二 、创设情境,导入新课 如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放课件) (1)你能帮他想个办法吗? (2)如果他只带了一个卷尺,能完成这个任务吗? (1)[生]能有两种方法. 第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的. 第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等. 可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等. [师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗? 三、探究 做一做: 已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律? (学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体课件演示,激发学习兴趣). 作法: 第一步:作∠MCN=90°. 第二步:在射线CM上截取CB=4cm. 第三步:以B为圆心,5cm为半径画弧交射线CN于点A. 第四步:连结AB. 就可以得到所想要的Rt△ABC.(如下图所示) 将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等. 可以验证,对一般的直角三角形也有这样的规律. 探究结果总结: 斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”). [师]你能用几种方法说明两个直角三角形全等呢? [生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定. [师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行. 四、例题: [例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD. 分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了. 证明:∵AC⊥BC,BD⊥AD ∴∠D=∠C=90° 在Rt△ABC和Rt△BAD中 ∴Rt△ABC≌Rt△BAD(HL) ∴BC=AD. [例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系? [师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看. 证明:在Rt△ABC和Rt△DEF中 所以Rt△ABC≌Rt△DEF(HL) ∴∠ABC=∠DEF 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90° 即两滑梯的倾斜角∠ABC与∠DFE互余. 五、课时小结 至此,我们有六种判定三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS) 4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中) 六、布置作业 教科书习题12.2第6、7、8题. 12.2 三角形全等判定(4) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高 七、板书设计 12.2三角形全等的判定 第5课时 【教学目标】: 知识与技能:1.掌握全等三角形的判定方法. 2.能结合已知条件合理选用某种判定方法证明两个三角形全等. 过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明. 情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神. 教学重点: 根据已知条件选择合适的判定方法证明两个三角形全等. 教学难点:根据已知条件选择合适的判定方法证明两个三角形全等. 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、知识梳理 问题1 请同学们回答下列问题: (1)判定两个三角形全等的方法有哪些? (2)判定两个直角三角形全等的方法有哪些? (3)在三角形全等的判定方法中,至少要几个条件? 二、证题思路建构 问题2 已知:如图, (1)当AB =DC时, 再添一个条件证明△ABC≌△DCB, 这个条件可以是 . (2)当∠A =∠D 时, 再添一个条件证明△ABC ≌ △DCB,这个条件可以是 . 分析:在△ABC 和△DCB 中,已经具备了什么条件? (1)若要以“SAS”为依据,还缺条件 ____; (2)若要以“ASA ”为依据,还缺条件____; (3)若要以“AAS ”为依据,还缺条件____; (4)若要以“SSS ”为依据,还缺条件____. 证明两个三角形全等的基本思路 (1)已知两边; (2)已知一边一角; (3)已知两角. 三、典型例题 例1 已知:如图, (1)若AB =DC,∠A =∠D,你能证明哪两个三角形全等? (2)若AB =DC,∠A =∠D =90°,你能证明哪两个三角形全等? 变式1 已知:如图,∠ABC =∠DCB,BD、CA 分别是∠ABC、∠DCB 的平分线,求证:AB = DC. 变式2 已知:如图,AB =DC,AC =DB.求证: EA =ED. 变式3 已知:如图,AB =DC,AC =BD.求证: EA =ED. 变式4 如图,延长BA、CD 交于点P: (1)若PA =PD,PB =PC.求证:BE =CE; (2)若PA =PD,∠B =∠C.求证: BE =CE; 四、小结: 证两三角形全等的方法 (1)先确定要证哪两个三角形全等; (2)在图中标出相等的边和角(公共边、公共角以及对顶角都是隐含条件); (3)分析已知条件,欠缺条件,选择判断方法. 五、布置作业 教科书复习题12第3、4、7、8、9 题. 12.3 角平分线 第1课时 【教学目标】: 知识与技能:理解角平分线的画法.应用三角形全等的知识,解释角平分线的原理.会用尺规作一个已知角的平分线. 过程与方法:在探索角的平分线的画法和性质中培养学生探究问题的兴趣,增强解决问题的信心。 情感态度与价值观:在利用尺规作图的过程中,培养学生动手操作能力与探索精神. 教学重点:利用尺规作已知角的平分线。。 教学难点:角的平分线性质的应用。 教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。 课前准备 多媒体课件 【教学过程】: 一、创设情境、导入新课- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 十二 全等 三角形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文