【6套合集】山东省实验中学2020中考提前自主招生数学模拟试卷附解析.docx
《【6套合集】山东省实验中学2020中考提前自主招生数学模拟试卷附解析.docx》由会员分享,可在线阅读,更多相关《【6套合集】山东省实验中学2020中考提前自主招生数学模拟试卷附解析.docx(57页珍藏版)》请在咨信网上搜索。
中学自主招生数学试卷 一、选择题 1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】 A.众数是4 B.中位数是1.5 C.平均数是2 D.方差是1.25 2. 如图所示,A,B,C均在⊙O上,若∠OAB=40O ,是优弧,则∠C的度数为 【 】 A. 40O B.45O C. 50O D. 55O 3. 若二次函数y=ax2+bx+c,当x取x1,x2(x1≠x2)时,函数值相等,则x取x1+x2时,函数值为 【 】 A. a+c B. a - c C. - c D. c 4. 已知在锐角△ABC中,∠A=550 ,AB﹥BC。则∠B的取值范围是 【 】 A.35o ﹤∠B﹤55o B. 40o ﹤∠B﹤55o C. 35o ﹤∠B﹤70o D. 70o ﹤∠B﹤90o 5. 正比例函数y1=k1x(k1>0)与反比例函数 (k2>0)部分图象如图所示, 则不等式k1x>的解集在数轴上表示正确的是 【 】 A. B. C. D. 6. 定义运算符号“*”的意义为a*b=a+bab(a、b均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】 A.只有①正确 B. 只有②正确 C. ①和②都正确 D. ①和②都不正确 7. 已知且,那么的值为 【 】 A. 2 B. 3 C. 4 D.5 8. 如图,点A的坐标为(0,1),点 B是 x轴正半轴上的一动点,以 AB为边作等腰直角 △ABC ,使ÐBAC=90O,设点 B的横坐标为 x,点 C的纵坐标为 y,能表示 y与x的函数关系的图象大致是( ) A B C D 9.已知△ABC是⊙O的内接正三角形,△ABC的面积为a,DEFG是半圆O的内接正方形,面积等于b,那么的值为 【 】 A. 2 B. C. D. 10. 横坐标、纵坐标都是整数的点叫做整点,函数的图象上整点的个数是【 】 A.2个 B.3个 C.4个 D.5个 二、填空题 11.如图,五边形是正五边形,若, 则 . 12.实数a、b、c满足a2-6b= -17,b2+8c= - 23,c2+2a=14,则a+b+c=_______ 13.把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则b=_______,c=________ 14.对于正数x,规定,则 15.如图,在△ABC内的三个小三角形的面积分别 是10、16、20,若△ABC的面积S,则S=_____ 16.工人师傅在一个长为25cm、宽为18cm的矩形铁皮上剪去一个和三边都相切的⊙A后,在剩余部分的废料上再剪出一个最大的⊙B,则圆B的半径是___cm 三、解答题 17. (本题满分10分) 甲、乙两船从河中A地同时出发,匀速顺水下行至某一时刻,两船分别到达B地和C地.已知河中各处水流速度相同,且A地到B地的航程大于A地到C地的航程.两船在各自动力不变情况下,分别从B地和C地驶回A地所需的时间为t1和t2.试比较t1和t2的大小关系. 18. (本题满分10分) 关于三角函数有如下的公式: ① ② ③ 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: 根据上面的知识,你可以选择适当的公式解决下面实际问题: 如图所示,直升机在一建筑物CD上方A点处测得建筑物顶端D点的俯角a为60o,底端C点的俯角b为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。 19. (本题满分12分) 某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表. 校本课程 频数 频率 A 36 0.45 B 0.25 C 16 b D 8 合计 a 1 (图1) (图2) 请您根据图表中提供的信息回答下列问题: (1)统计表中的a= ,b= ; (2)“D”对应扇形的圆心角为 度; (3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率. 20.(本题满分12分) 阅读以下的材料: (1)如果两个正数a,b,即a>0,b>0,有下面的不等式: 当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。 (2)茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。茎叶图的思路是将一组数中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。例如:将2、10、15、20、23、27这6个数据用茎叶图表示如右图。 下面举两个例子: 例1:已知x>0,求函数的最小值。 解:令a=x,,则有,得,当且仅当即x=2时,函数有最小值,最小值为2。 例2:已知a>0,b>0,且 解:因为a>0,b>0,所以 当且仅当 即 时取等号, 根据上面回答下列问题: ①已知x>1,则当x=______时,函数取到最小值,最小值为______; ②为保障中考期间的食品安全,某县城对各考点进行食品检查,如图所示是某食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,若m>0,n>0且m+n=a+b求的最小值; ③已知x>0,则自变量x取何值时,函数 取到最大值, 最大值为多少? 21.(本题满分12分) 如此巧合! 下面是小刘对一道题目的解答. 题目:如图,的内切圆与斜边相切于点, ,,求的面积. 解:设的内切圆分别与、相切于点、,的长为. 根据切线长定理,得,,. 根据勾股定理,得.整理,得. 所以. 小刘发现恰好就是,即的面积等于与的积.这仅仅是巧合吗? 请你帮他完成下面的探索. 已知:的内切圆与相切于点,,. 可以一般化吗? (1)若,求证:的面积等于. 倒过来思考呢? (2)若,求证. 改变一下条件…… (3)若,用 中学自主招生数学试卷 一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( ) A. -5 B. 5 C.0.5 D. 0.2 2.下列图形中既是中心对称图形又是轴对称图形的是( ) A. B.C. D. 3. 人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是( ) A.143 344 937 km B. 1 433 449 370 km C. 14 334 493 700 km D. 1.43344937 km 4.下列计算正确的是( ) A.2a-3a=-1 B.(a2b3)3=a5b6 C.a2 ·a3=a6 D.a2+3a2=4a2 5. 已知关于x的分式方程mx+=2有解,则m的取值范围是( ) A.m≤1且m≠0 B. m≤1 C. m≥-1 D. m≥-1 且m≠0 6. 如图所示,该物体的主视图为( ) A.B.C.D. 7. 如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC 为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为( ) A. 30° B. 25° C. 40° D. 50° 8. 不等式组的解集在数轴上表示正确的是( ) A.B.C.D. 9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( ) A. B. C. D. 10. 如图1所示,小明(点P)在操场上跑步,操场由两段半圆形 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x, 小明到右侧半圆形弯道的圆心O的距离PO为y, 可绘制出如图2所示函数图象,那么a-b的值应为( ) A.4 B.π-1 C. D.π 二、填空题(3分×5=15分) 11. (-3)0+= . 12. 如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= . 13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是 . 14. 如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E. 连接CE,则阴影部分的面积是 .(结果保留π) 15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为 . 三、解答题(本大题共8小题,满分75分) 16. (8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值. 17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整; ⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. 18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F. ⑴求证:CE=AE ⑵填空: ①当∠ABC= 时,四边形AOCE是菱形; ②若AE=,AB=,则DE的长为 . 19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB长 为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与 底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C到桌面的 高度CE的长? (结果精确到0.1cm,参考数据:≈1.732) 20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P, PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0). ⑴求双曲线的解析式; ⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴 于H,当以点Q、C、H为顶点的三角与△AOB相似 时,求点Q的坐标. 21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表 甲 乙 进价(元/双) m m-20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m的值 ⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)? ⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED. (1)观察猜想: 如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为 ; (2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E、D、G共线时,直接写出DG的长度. 23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0), D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒. ①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16; ②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM= 2∠QCE,若存在请直接写出相应的t值,若不存在说明理由. 参考答案 一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D 二、填空题(3分×5=15分) 11.-2 12.80° 13.m≥1 14.3- 15. 或 三、解答题(本大题共8小题,满分75分) 16.解:= = = 当x=1时,原式= 17. 解:(1)(6+4)÷50%=20. 所以王老师一共调查了20名学生, 故答案为:20; (2)C类学生人数:20×25%=5(名), C类女生人数:5-2=3(名),D类学生占的百分比: 1-15%-50%-25%=10%,D类学生人数:20×10%=2(名), D类男生人数:2-1=1(名),×360°=36°, 故答案为:3;36°;补充条形统计图如图. (3)由题意画树形图如下: 从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P(所选两位同学恰好是一位男同学和一位女同学)== 18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE, 又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD, 在△ABE和△CDE中,∴△ABE≌△CDE(AAS) (2)①60°;② 19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA, ∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°, ∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°= ∴CM=15cm, 在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°, ∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm. 答:此时灯罩顶端C到桌面的高度CE是51.6cm. 20. 解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y= 得:k=4,则双曲线解析式为y= (2)设Q(m,n),∵Q(m,n)在y=上, ∴n=当△QCH∽△BA 中学自主招生数学试卷 一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( ) A. -5 B. 5 C.0.5 D. 0.2 2.下列图形中既是中心对称图形又是轴对称图形的是( ) A. B.C. D. 3. 人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是( ) A.143 344 937 km B. 1 433 449 370 km C. 14 334 493 700 km D. 1.43344937 km 4.下列计算正确的是( ) A.2a-3a=-1 B.(a2b3)3=a5b6 C.a2 ·a3=a6 D.a2+3a2=4a2 5. 已知关于x的分式方程mx+=2有解,则m的取值范围是( ) A.m≤1且m≠0 B. m≤1 C. m≥-1 D. m≥-1 且m≠0 6. 如图所示,该物体的主视图为( ) A.B.C.D. 7. 如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC 为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为( ) A. 30° B. 25° C. 40° D. 50° 8. 不等式组的解集在数轴上表示正确的是( ) A.B.C.D. 9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( ) A. B. C. D. 10. 如图1所示,小明(点P)在操场上跑步,操场由两段半圆形 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x, 小明到右侧半圆形弯道的圆心O的距离PO为y, 可绘制出如图2所示函数图象,那么a-b的值应为( ) A.4 B.π-1 C. D.π 二、填空题(3分×5=15分) 11. (-3)0+= . 12. 如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= . 13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是 . 14. 如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E. 连接CE,则阴影部分的面积是 .(结果保留π) 15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为 . 三、解答题(本大题共8小题,满分75分) 16. (8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值. 17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整; ⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. 18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F. ⑴求证:CE=AE ⑵填空: ①当∠ABC= 时,四边形AOCE是菱形; ②若AE=,AB=,则DE的长为 . 19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB长 为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与 底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C到桌面的 高度CE的长? (结果精确到0.1cm,参考数据:≈1.732) 20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P, PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0). ⑴求双曲线的解析式; ⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴 于H,当以点Q、C、H为顶点的三角与△AOB相似 时,求点Q的坐标. 21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表 甲 乙 进价(元/双) m m-20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m的值 ⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)? ⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED. (1)观察猜想: 如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为 ; (2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E、D、G共线时,直接写出DG的长度. 23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0), D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒. ①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16; ②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM= 2∠QCE,若存在请直接写出相应的t值,若不存在说明理由. 参考答案 一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D 二、填空题(3分×5=15分) 11.-2 12.80° 13.m≥1 14.3- 15. 或 三、解答题(本大题共8小题,满分75分) 16.解:= = = 当x=1时,原式= 17. 解:(1)(6+4)÷50%=20. 所以王老师一共调查了20名学生, 故答案为:20; (2)C类学生人数:20×25%=5(名), C类女生人数:5-2=3(名),D类学生占的百分比: 1-15%-50%-25%=10%,D类学生人数:20×10%=2(名), D类男生人数:2-1=1(名),×360°=36°, 故答案为:3;36°;补充条形统计图如图. (3)由题意画树形图如下: 从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P(所选两位同学恰好是一位男同学和一位女同学)== 18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE, 又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD, 在△ABE和△CDE中,∴△ABE≌△CDE(AAS) (2)①60°;② 19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA, ∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°, ∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°= ∴CM=15cm, 在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°, ∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm. 答:此时灯罩顶端C到桌面的高度CE是51.6cm. 20. 解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y= 得:k=4,则双曲线解析式为y= (2)设Q(m,n),∵Q(m,n)在y=上, ∴n=当△QCH∽△BA 中学自主招生数学试卷 一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( ) A. -5 B. 5 C.0.5 D. 0.2 2.下列图形中既是中心对称图形又是轴对称图形的是( ) A. B.C. D. 3. 人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是( ) A.143 344 937 km B. 1 433 449 370 km C. 14 334 493 700 km D. 1.43344937 km 4.下列计算正确的是( ) A.2a-3a=-1 B.(a2b3)3=a5b6 C.a2 ·a3=a6 D.a2+3a2=4a2 5. 已知关于x的分式方程mx+=2有解,则m的取值范围是( ) A.m≤1且m≠0 B. m≤1 C. m≥-1 D. m≥-1 且m≠0 6. 如图所示,该物体的主视图为( ) A.B.C.D. 7. 如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC 为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为( ) A. 30° B. 25° C. 40° D. 50° 8. 不等式组的解集在数轴上表示正确的是( ) A.B.C.D. 9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( ) A. B. C. D. 10. 如图1所示,小明(点P)在操场上跑步,操场由两段半圆形 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x, 小明到右侧半圆形弯道的圆心O的距离PO为y, 可绘制出如图2所示函数图象,那么a-b的值应为( ) A.4 B.π-1 C. D.π 二、填空题(3分×5=15分) 11. (-3)0+= . 12. 如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= . 13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是 . 14. 如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E. 连接CE,则阴影部分的面积是 .(结果保留π) 15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为 . 三、解答题(本大题共8小题,满分75分) 16. (8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值. 17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整; ⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. 18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F. ⑴求证:CE=AE ⑵填空: ①当∠ABC= 时,四边形AOCE是菱形; ②若AE=,AB=,则DE的长为 . 19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB长 为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与 底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C到桌面的 高度CE的长? (结果精确到0.1cm,参考数据:≈1.732) 20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P, PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0). ⑴求双曲线的解析式; ⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴 于H,当以点Q、C、H为顶点的三角与△AOB相似 时,求点Q的坐标. 21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表 甲 乙 进价(元/双) m m-20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m的值 ⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)? ⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED. (1)观察猜想: 如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为 ; (2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E、D、G共线时,直接写出DG的长度. 23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0), D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒. ①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16; ②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM= 2∠QCE,若存在请直接写出相应的t值,若不存在说明理由.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6套合集 套合集 山东省 实验 中学 2020 中考 提前 自主 招生 数学模拟 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文