上海位育初级中学八年级上册期末数学试卷含答案[001].doc
《上海位育初级中学八年级上册期末数学试卷含答案[001].doc》由会员分享,可在线阅读,更多相关《上海位育初级中学八年级上册期末数学试卷含答案[001].doc(22页珍藏版)》请在咨信网上搜索。
上海位育初级中学八年级上册期末数学试卷含答案 一、选择题 1、下面有4个图案,其中轴对称图形的个数是( ) A.1 B.2 C.3 D.4 2、进入寒冷的腊月,云南多地下起了小雪,据测定,某雪花的直径约为0.0000015米,将数据0.0000015用科学记数法表示为( ) A. B. C. D. 3、下列运算正确的是( ) A. B. C. D. 4、若分式的值为0,则x的值是( ) A.1 B.0 C. D.±1 5、分析四个结论:①;②因式分解;③是完全平方式;④.其中正确的有( ) A.① B.③ C.②③④ D.①③④ 6、下列各式从左到右变形不正确的是( ) A. B. C. D. 7、如图,AC,BD相交于点O,OA=OC,要使△AOB≌△COD,则下列添加的条件中错误的是( ) A.∠A=∠C B.∠B=∠D C.OB=OD D.AB=CD 8、若关于的方程有增根,则的值为( ) A.-5 B.0 C.1 D.2 9、如图,四边形ABCD中,连接BD,O为BD中点,∠BAD=90°,∠BCD=90°,∠BDA=30°,∠BDC=45°,则∠CAO=( ) A.15° B.18° C.22.5° D.30° 二、填空题 10、如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为( ) A.80° B.70° C.60° D.45° 11、若分式的值为0,则______. 12、点关于轴对称的点的坐标为_________. 13、若,则____. 14、已知,则=_____. 15、如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____. 16、过多边形的一个顶点可作7条对角线,则多边形的内角和为 ______________. 17、如图,两个正方形的边长分别为a、b,如果a+b=10,ab=18,则阴影部分的面积为 _____. 18、如图,AB=12cm,∠CAB=∠DBA=62°,AC=BD=9cm.点P在线段AB上以3cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设点Q的运动速度为xcm/s.当以B、P、Q为顶点的三角形与△ACP全等时,x的值为 __________________. 三、解答题 19、分解因式: (1); (2) 20、解分式方程 (1) (2) 21、如图,点,,,在同一直线上,点,在的异侧,,,. (1)求证:. (2)若,,求的度数. 22、阅读材料,回答下列问题: 【材料提出】 “八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成. 【探索研究】 探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ; 探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ; 探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 . 【模型应用】 应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示) 应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示) 【拓展延伸】 拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P) 拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 . 23、国泰公司和振华公司的全体员工踊跃参与“携手防疫,共渡难关”捐款活动,国泰公司共捐款100000元,振华公司共捐款140000元.下面是国泰、振华两公司员工的一段对话: (1)国泰、振华两公司各有多少人? (2)现国泰、振华两公司共同使用这笔捐款购买A,B两种防疫物资,A种防疫物资每箱12000元,B种防疫物资每箱10000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来.(注:A,B两种防疫物资均需购买,并按整箱配送) 24、教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题. 例如:分解因式 求代数式的最小值,. 当时,有最小值,最小值是, 根据阅读材料用配方法解决下列问题: (1)分解因式:__________. (2)当x为何值时,多项式有最大值?并求出这个最大值. (3)若,求出a,b的值. 25、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 一、选择题 1、B 【解析】B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:左起第二、四两个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形, 第一、三两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形, 故选:B. 【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置. 2、C 【解析】C 【分析】结合题意,根据科学记数法和负整数指数幂的性质计算,即可得到答案. 【详解】数据0.0000015用科学记数法表示为: 故选:C. 【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握科学记数法定义:科学记数法是指把一个数表示成形式,其中n为整数,且a满足1≤|a|<10;对小于1的数,用科学记数法表示为的形式. 3、C 【解析】C 【分析】利用合并同类项的法则,积的乘方的法则,同底数幂的除法的法则对各项进行运算即可. 【详解】解:A、a3+a3=2a3,故A不符合题意; B、(a2b)2=a4b2,故B不符合题意; C、(-a)6÷(-a)2=a4,故C符合题意; D、(-2a)3=-8a3,故D不符合题意; 故选:C. 【点睛】本题主要考查合并同类项,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握. 4、C 【解析】C 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式的值为0, ∴ , 解得:, 故选择:C 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键. 5、B 【解析】B 【分析】根据零指数幂的意义、平方差公式、完全平方公式以及添括号法则即可求出答案. 【详解】解:①当a=0时,不成立,故①不符合题意; ②因式分解:a2-b2=(a+b)(a-b),故②不符合题意; ③4b2+4b+1是完全平方式,故③符合题意; ④a+b+c=a-(-b-c),故④不符合题意; 故选:B. 【点睛】本题考查零指数幂的意义、平方差公式、完全平方公式以及添括号法则,本题属于基础题型. 6、B 【解析】B 【分析】根据分式的基本性质即可求解. 【详解】解:A. ,该选项变形正确,不符合题意; B. ,该选项变形错误,符合题意; C. ,该选项变形正确,不符合题意; D. ,该选项变形正确,不符合题意; 故选:B. 【点睛】此题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键. 7、D 【解析】D 【分析】根据全等三角形的判定定理依次分析判断即可. 【详解】∵∠AOB=∠COD,OB=OD, ∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD; 当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD; 当添加OB=OD时,可根据“SAS”判断△AOB≌△COD. 如果添加 AB=CD,则根据“SSA”不能判定△AOB≌△COD. 故选:D. 【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理并应用是解题的关键. 8、A 【解析】A 【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答. 【详解】解:, 去分母得,m+1+2x=0, 解得:, ∵方程有增根, ∴x=2, 把x=2代入,得, , 解得. 故选A. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 9、A 【解析】A 【分析】根据直角三角形斜边上的中线等于斜边的一半可得,根据等腰三角形的性质与三角形外角的性质可得,在中,根据三角形内角和定理即可求解. 【详解】解:∵∠BAD=90°,∠BCD=90°,O为BD中点, ∴, ∠BDA=30°,∠BDC=45°, , , , , 故选A. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,三角形的外角的性质,三角形内角和定理,掌握以上知识是解题的关键. 二、填空题 10、B 【解析】B 【分析】连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解. 【详解】如图所示,连接AE. ∵AB=DE,AD=BC ∵DE∥BC, ∴∠ADE=∠B,可得AE=DE ∵AB=AC,∠BAC=20°, ∴∠DAE=∠ADE=∠B=∠ACB=80°, 在△ADE与△CBA中, , ∴△ADE≌△CBA(ASA), ∴AE=AC,∠AED=∠BAC=20°, ∵∠CAE=∠DAE-∠BAC=80°-20°=60°, ∴△ACE是等边三角形, ∴CE=AC=AE=DE,∠AEC=∠ACE=60°, ∴△DCE是等腰三角形, ∴∠CDE=∠DCE, ∴∠DEC=∠AEC-∠AED=40°, ∴∠DCE=∠CDE=(180-40°)÷2=70°. 故选B. 【点睛】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度. 11、2 【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案. 【详解】解:由题意,得 x2﹣4=0且x+2≠0, 解得x=2, 故答案为:1、 【点睛】本题考查了分式为零的条件,要使分式的值为零,必须同时满足分子为零,且分母不为零. 12、(-2,3) 【分析】关于y轴对称的两点的坐标关系:纵坐标相同,横坐标互为相反数,据此解题. 【详解】解:点P(2,3)关于y轴对称的点的坐标为(-2,3), 故答案为:(-2,3). 【点睛】本题主要考查了坐标与图形变化——轴对称,解决问题的关键是平面直角坐标系中任意一点P(x,y)关于y轴的对称点的坐标是(-x,y),即纵坐标不变,横坐标变成相反数. 13、3 【分析】由a+b-3ab=0得a+b. 【详解】解:由a+b-3ab=0得a+b=3ab, =3, 故答案为2、 【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键. 14、 【分析】先根据幂的乘方求出,再根据同底数幂的除法的逆运算法则求解即可. 【详解】解:∵, ∴, ∴, 故答案为:. 【点睛】本题主要考查了幂的乘方,同底数幂除法的逆运算,熟知相关计算法则是解题的关键. 15、6 【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值. 【详解】解:过点C作 【解析】6 【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值. 【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′, ∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N ∴M′N′=M′E, ∴CE=CM′+M′E ∴当点M与M′重合,点N与N′重合时,CM+MN的最小值. ∵三角形ABC的面积为30,AB=10, ∴×10×CE=30, ∴CE=5、 即CM+MN的最小值为5、 故答案为5、 【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型. 16、##1440度 【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=7,求出n的值,最后根据多边形内角和公式可得结论. 【详解】解:由题意得:n-3=7,解得n=10,则该n边 【解析】##1440度 【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=7,求出n的值,最后根据多边形内角和公式可得结论. 【详解】解:由题意得:n-3=7,解得n=10,则该n边形的内角和是:(10-2)×180°=1440°, 故答案为:1440°. 【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键. 17、23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的 【解析】23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的面积 = = = =23, 故答案为:22、 【点睛】此题考查了完全平方公式的变形计算,正确掌握完全平方公式法则是解题的关键. 18、3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ①若△AC 【解析】3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ①若△ACP≌△BPQ, 则AC=BP,AP=BQ, 解得:; ②若△ACP≌△BQP, 则AC=BQ,AP=BP, , 解得:; 综上所述,当x=3或 时,△ACP与△BPQ全等. 故答案为3或. 【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是注意分类讨论思想的渗透. 三、解答题 19、(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛】此题主要考查了提取公 【解析】(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差和完全平方公式是解题关键. 20、(1);(2) 【分析】(1)分式方程两边同乘以x(x+2),去分母将分式方程转化为整式方程求解,结果要检验; (2)分式方程两边同乘以(x-2)(x+2),去分母将分式方程转化为整式方程求解,结果 【解析】(1);(2) 【分析】(1)分式方程两边同乘以x(x+2),去分母将分式方程转化为整式方程求解,结果要检验; (2)分式方程两边同乘以(x-2)(x+2),去分母将分式方程转化为整式方程求解,结果要检验. 【详解】解:(1)去分母得:2x+4=3x, 解得:x=4, 经检验x=4是分式方程的解; (2)去分母得:x(x+2)-1=(x+2)(x-2), 解得:, 经检验是分式方程的解. 【点睛】本题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 21、(1)证明见解析;(2). 【分析】(1)证△ABE≌△DCF(SAS),得∠AEB=∠DFC,即可得出结论; (2)由全等三角形的性质得∠A=∠D,∠B=∠C=30°,再求出∠A=72°,然后由三 【解析】(1)证明见解析;(2). 【分析】(1)证△ABE≌△DCF(SAS),得∠AEB=∠DFC,即可得出结论; (2)由全等三角形的性质得∠A=∠D,∠B=∠C=30°,再求出∠A=72°,然后由三角形的外角性质求解即可. 【详解】(1)证明:∵, ∴, ∵, ∴ ∴, ∴; (2)解:∵, ∴,, ∵, ∴, ∴. 【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及三角形的外角性质等知识;熟练掌握平行线的判定,证明三角形全等是解题的关键. 22、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°. 【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解; 探索二:根据角平分线 【解析】∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°. 【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解; 探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解; 探索三:运用探索一和探索二的结论即可求得答案; 应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案; 应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案; 拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案; 拓展二:运用探索一的结论及角平分线定义即可求得答案. 【详解】解:探索一:如图1, ∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD, ∴∠A+∠B=∠C+∠D, 故答案为∠A+∠B=∠C+∠D; 探索二:如图2, ∵AP、CP分别平分∠BAD、∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D, ∴∠B﹣∠P=∠P﹣∠D, 即2∠P=∠B+∠D, ∵∠B=36°,∠D=14°, ∴∠P=25°, 故答案为25°; 探索三:由①∠D+2∠1=∠B+2∠3, 由②2∠B+2∠3=2∠P+2∠1, ①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1 ∠D+2∠B=2∠P+∠B. ∴∠P=. 故答案为:∠P=. 应用一:如图4, 延长BM、CN,交于点A, ∵∠M=α,∠N=β,α+β>180°, ∴∠AMN=180°﹣α,∠ANM=180°﹣β, ∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°; ∵BP、CP分别平分∠ABC、∠ACB, ∴∠PBC=∠ABC,∠PCD=∠ACD, ∵∠PCD=∠P+∠PBC, ∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=, 故答案为:α+β﹣180°,; 应用二:如图5, 延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点, ∵∠M=α,∠N=β,α+β<180°, ∴∠A=180°﹣α﹣β, ∵BP平分∠MBC,CP平分∠NCR, ∴BP平分∠ABT,CP平分∠ACB, 由应用一得:∠P=∠A=, 故答案为:; 拓展一:如图6, 由探索一可得: ∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB, ∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB, ∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y, ∠PAB=∠CAB,∠PDB=∠CDB, ∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB, ∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=, ∴∠P=, 故答案为:∠P=; 拓展二:如图7, ∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE, ∴∠PAD=∠BAD,∠PCD=90°+∠BCD, 由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD, ②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD, ③﹣①,得:2∠P﹣∠B=∠D+180°, ∴2∠P﹣∠B﹣∠D=180°, 故答案为:2∠P﹣∠B﹣∠D=180°. 【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可. 23、(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公司有 【解析】(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公司有x人,则振华公司有(x+40)人,根据振华公司的人均捐款数是国泰公司的倍,列出分式方程,解之经检验后即可得出结论; (2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,列出二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案. (1) 解:设国泰公司有x人,则振华公司有(x+40)人, 依题意,得:, 解得:x=200, 经检验,x=200是原方程的解,且符合题意, ∴x+40=240. 答:国泰公司有200人,振华公司有240人. (2) 设购买A种防疫物资m箱,购买B种防疫物资n箱, 依题意,得:12000m+10000n=100000+140000, ∴m=20n. 又∵n≥10,且m,n均为正整数, 当n=12时,m=20n=10, 当n=18时,m=20n=5, 当n=24时,m=20n=0,不符合题意,故舍去, ∴或, ∴有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程. 24、(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到当x 【解析】(1)(x+1)(x-5);(2)x=-1,最大值为5;(3)a=2,b=1 【分析】(1)根据题目中的例子,可以将题目中的式子因式分解; (2)根据题目中的例子,先将所求式子变形,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值; (3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值. 【详解】解:(1)x2-4x-5 =(x-2)2-9 =(x-2+3)(x-2-3) =(x+1)(x-5), 故答案为:(x+1)(x-5); (2)∵-2x2-4x+3=-2(x+1)2+5, ∴当x=-1时,多项式-2x-4x+3有最大值,这个最大值是5; (3)∵, ∴, ∴, ∴, ∴a-2b=0,b-1=0, ∴a=2,b=1. 【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答. 25、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图 【解析】(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 上海 初级中学 年级 上册 期末 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文