高三理科数学填空题专项训练(五).doc
《高三理科数学填空题专项训练(五).doc》由会员分享,可在线阅读,更多相关《高三理科数学填空题专项训练(五).doc(3页珍藏版)》请在咨信网上搜索。
高三理科数学填空题专项训练(五) 1.已知命题“”是真命题,则实数a的取值范围是 ▲ . 2.设全集,,则图中阴影部分表示的集合为( )B A. B. C. D. 3.已知且则 ▲ . 4.若函数是奇函数,则满足的的取值范围是 ▲ . 5.设是两条不同的直线,是两个不同的平面,给出下列四个命题: ①若; ②若 ③若; ④若. 其中正确命题的个数是( ) A.1 B.2 C.3 D.4 3.(理)A【解析】对于①,可能存在;对于②,若加上条件就正确了;对于③是正确的;对于④,直线可能平行,也可能相交或异面;综上可知,正确的命题只有一个. 6.等比数列{an}的前n项和为Sn,若,则公比q=_______. 14. 【解析】显然公比,设首项为,则由,得,即,即,即,所以,解得. 7.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则的值为________. 【解析】不难作出图形,可知向量的夹角为,向量的夹角为,在直角三角形中,由,得. 8.在△中,角A、B、C所对的边分别为a、b、c,且满足,则的最大值是 . 16.1【解析】由,得,又由正弦定理,得,所以.又,所以.又,所以.故,则.所以 .故当时,取得最大值1. 9.如图,正方体的棱长为1,分别为线段上的点,则三棱锥的体积为____________. 14. 【解析】法一:因为点在线段上,所以,又因为点在线段上,所以点到平面的距离为1,即,所以. 法二:使用特殊点的位置进行求解,令点在点处,点在点处,则. 10. (2012·银川一中第三次月考)给出下列四个命题: ①已知都是正数,且,则; ②若函数的定义域是,则; ③已知x∈(0,π),则的最小值为; ④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则的值等于2. 其中正确命题的序号是________. 16.①④ 【解析】对于①,由,得,又都是正数,所以,即.故①正确;对于②,令,此时函数的定义域是,不是,故②错误;对于③,设,则,因为在区间上单调递减,所以的最小值是,即的最小值为3,故③错误;对于④,由题意,,所以.故④正确. 11.如图,菱形的边长为,,为的中点,若为菱形内任意一点(含边界),则的最大值为 A. B. C. D.9 【答案】D 【解析】 以A点为坐标原点,建立直角坐标系,因为,菱形的边长为2,所以D点坐标为,,因为是中点,所以,设,则点的活动区域为四边形OBCM内(含边界),则,令,得,由线性规划可知,当直线经过点C时,直线的截距最大,此时最大,所以此时最大值为,选D. 12.已知函数的定义域为,部分对应值如下表,的导函数的图象如图所示. 下列关于的命题: ①函数的极大值点为,; ②函数在上是减函数; ③如果当时,的最大值是2,那么的最大值为4; ④当时,函数有个零点; ⑤函数的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 . 【答案】①②⑤ 【解析】由导数图象可知,当或时,,函数单调递增,当或,,函数单调递减,当和,函数取得极大值,,当时,函数取得极小值,所以①正确;②正确;因为在当和,函数取得极大值,,要使当函数的最大值是4,当,所以的最大值为5,所以③不正确;由知,因为极小值未知,所以无法判断函数有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分或两种情况,由图象知,函数和的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤。 13.已知函数()在上恒正,则实数a的取值范围为 ▲ . 14.数列{an}满足an+1+(-1)n an =2n-1,则{an}的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830 12. D【解析】由,得 , 即,也有, 两式相加得. 设为整数,则. 于是. 14.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理科 数学 填空 专项 训练
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文