天津外国语大学附属外国语学校八年级上册压轴题数学模拟试卷及答案.doc
《天津外国语大学附属外国语学校八年级上册压轴题数学模拟试卷及答案.doc》由会员分享,可在线阅读,更多相关《天津外国语大学附属外国语学校八年级上册压轴题数学模拟试卷及答案.doc(37页珍藏版)》请在咨信网上搜索。
天津外国语大学附属外国语学校八年级上册压轴题数学模拟试卷及答案 一、压轴题 1.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE. (2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标. (3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标. 解析:(1)见解析(2)(4,2)(3)(6,0) 【解析】 【分析】 (1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论; (2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论; (3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论. 【详解】 证明:∵∠ACB=90°,AD⊥l ∴∠ACB=∠ADC ∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE ∴∠CAD=∠BCE, ∵∠ADC=∠CEB=90°,AC=BC ∴△ACD≌△CBE, ∴AD=CE,CD=BE, (2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G, 由已知得OM=ON,且∠OMN=90° ∴由(1)得MF=NG,OF=MG, ∵M(1,3) ∴MF=1,OF=3 ∴MG=3,NG=1 ∴FG=MF+MG=1+3=4, ∴OF﹣NG=3﹣1=2, ∴点N的坐标为(4,2), (3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H, 对于直线y=﹣3x+3,由x=0得y=3 ∴P(0,3), ∴OP=3 由y=0得x=1, ∴Q(1,0),OQ=1, ∵∠QPR=45° ∴∠PSQ=45°=∠QPS ∴PQ=SQ ∴由(1)得SH=OQ,QH=OP ∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1 ∴S(4,1), 设直线PR为y=kx+b,则 ,解得 ∴直线PR为y=﹣x+3 由y=0得,x=6 ∴R(6,0). 【点睛】 本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 2.(1)在等边三角形ABC中, ①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是 度; ②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是 度; (2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示). 解析:(1)①60°;②60°;(2)∠BFE =α. 【解析】 【分析】 (1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA; (2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α. 【详解】 (1)如图①中, ∵△ABC是等边三角形, ∴AC=CB,∠A=∠BCD=60°, ∵AE=CD, ∴△ACE≌△CBD, ∴∠ACE=∠CBD, ∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°. 故答案为60. (2)如图②中, ∵△ABC是等边三角形, ∴AC=CB,∠A=∠BCD=60°, ∴∠CAE=∠BCD=′120° ∵AE=CD, ∴△ACE≌△CBD, ∴∠ACE=∠CBD=∠DCF, ∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°. 故答案为60. (3)如图③中, ∵点O是AC边的垂直平分线与BC的交点, ∴OC=OA, ∴∠EAC=∠DCB=α, ∵AC=BC,AE=CD, ∴△AEC≌△CDB, ∴∠E=∠D, ∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α. 【点睛】 本题综合考查了三角形全等以及三角形外角和定理. 3.探究发现:如图①,在中,内角的平分线与外角的平分线相交于点. (1)若,则 ; 若,则 ; (2)由此猜想:与的关系为 (不必说明理由). 拓展延伸:如图②,四边形的内角与外角的平分线相交于点,. (3)若,,求的度数,由此猜想与,之间的关系,并说明理由. 解析:(1)40°25°;(2)(或)(3)= 【解析】 【分析】 (1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将的角度带入即可求解; (2)由(1)可得,即可求解; (3)在与的平分线相交于点,可知,又因为,两直线平行内错角相等,得出,再根据三角形一外角等于不相邻的两个内角的和,得出,再由四边形的内角和定理得出,最后在中:,代入整理即可得出结论. 【详解】 解:(1)由题可知:BE为的角平分线,CE为的角平分线, =2=2,=2, , 三角形内角和等于, 在中:, 即:, ①, 在中:, 即:, ②, 综上所述联立①②,由①-②×2可得 :, , , , 当,则; 当,则; 故答案为,; (2)由(1)知:(或); (3)∵与的平分线相交于点, ∴, , 又∵, ∴(两直线平行,内错角相等), ∵是的一个外角, ∴(三角形一外角等于不相邻的两个内角的和), 在四边形中,四边形内角和为,, , ∴, ∴①, ∴, 即, 在中:,, 由上可得:, ②, 又∵, ∴, , , 由①②可得,, , . 【点睛】 本题主要考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意三角形的一个外角等于和它不相邻的两个内角的和. 4.如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是. (1)在运动过程中,当点位于线段的垂直平分线上时,求出的值; (2)在运动过程中,当时,求出的值; (3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由. 解析:(1)时,点位于线段的垂直平分线上;(2);(3)不存在,理由见解析. 【解析】 【分析】 (1)根据题意求出BP,CQ,结合图形用含t的代数式表示CP的长度,根据线段垂直平分线的性质得到CP=CQ,列式计算即可; (2)根据全等三角形的对应边相等列式计算; (3)根据全等三角形的对应边相等列式计算,判断即可. 【详解】 解:(1)由题意得, 则, 当点位于线段的垂直平分线上时,, ∴, 解得,, 则当时,点位于线段的垂直平分线上; (2)∵为的中点,, ∴, ∵, ∴, ∴, 解得,, 则当时,; (3)不存在,∵, ∴, 则 解得,,, ∴不存在某一时刻,使. 【点睛】 本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键. 5.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题. 材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:,求代数式x2+的值. 解:∵,∴=4 即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题. 例:若2x=3y=4z,且xyz≠0,求的值. 解:令2x=3y=4z=k(k≠0) 则 根据材料回答问题: (1)已知,求x+的值. (2)已知,(abc≠0),求的值. (3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值. 解析:(1)5; (2); (3) 【解析】 【分析】 (1)仿照材料一,取倒数,再约分,利用等式的性质求解即可; (2)仿照材料二,设===k(k≠0),则a=5k,b=2k,c=3k,代入所求式子即可; (3)本题介绍两种解法: 解法一:(3)解法一:设===(k≠0),化简得:①,②,③,相加变形可得x、y、z的代入=中,可得k的值,从而得结论; 解法二:取倒数得:==,拆项得,从而得x=,z=,代入已知可得结论. 【详解】 解:(1)∵=, ∴=4, ∴x﹣1+=4, ∴x+=5; (2)∵设===k(k≠0),则a=5k,b=2k,c=3k, ∴===; (3)解法一:设===(k≠0), ∴①,②,③, ①+②+③得:2()=3k, =k④, ④﹣①得:=k, ④﹣②得:, ④﹣③得:k, ∴x=,y=,z=代入=中,得: =, , k=4, ∴x=,y=,z=, ∴xyz===; 解法二:∵, ∴, ∴, ∴, ∴, 将其代入中得: = =,y=, ∴x=,z==, ∴xyz==. 【点睛】 本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子. 6.如图,在中,,,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E. (1)当时, , (2)当DC等于多少时,,请说明理由; (3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由. 解析:(1)30,100;(2),见解析;(3)可以,或 【解析】 【分析】 (1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ; (2)当 AB=DC 时,利用 AAS 可证明 ΔABD≅ΔDCE ,即可得出 AB=DC=3 ; (3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出 ∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB . 【详解】 (1)在 △BAD 中, ∵∠B=50°,∠BDA=100° , ∴, . 故答案为,. (2)当时,,理由如下: ∵, ∴ ∵, ∴ ∵ ∴ 在和中 ∴ (3)可以,理由如下: ∵, ∴ 分三种情况讨论: ①当时, ∵, ∴ ∴ ∵ ∴ ②当时, ∵ ∴ 又∵ ∴ ∴点D与点B重合,不合题意. ③当时, ∴ ∵ ∴ 综上所述,当的度数为或时,是等腰三角形. 【点睛】 本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键. 7.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE. (1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE= ,∠DCE= ,BC、DC、CE之间的数量关系为 ; (2)设∠BAC=α,∠DCE=β. ①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由; ②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论. (3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程). 解析:(1)70°,40°,BC+DC=CE;(2)①α=β;②当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°. 【解析】 【分析】 (1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质和全等三角形的性质求出即可; (2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可; ②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°; (Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β; (Ⅲ)当点D在线段BC的延长线上时,由①得α=β; (3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°. 【详解】 (1)如图1所示: ∵∠DAE=∠BAC, ∴∠DAE+∠CAD=∠BAC+∠CAD, ∴∠BAD=∠CAE. 在△BAD和△CAE中,, ∴△BAD≌△CAE(SAS), ∴∠ACE=∠B(180°﹣40°)=70°,BD=CE, ∴BC+DC=CE. ∵∠ACD=∠B+∠BAC=∠ACE+∠DCE, ∴∠BAC=∠DCE. ∵∠BAC=40°, ∴∠DCE=40°. 故答案为:70°,40°,BC+DC=CE; (2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下: ∵∠DAE=∠BAC, ∴∠DAE+∠CAD=∠BAC+∠CAD, ∴∠BAD=∠CAE. 在△BAD和△CAE中,, ∴△BAD≌△CAE(SAS), ∴∠B=∠ACE. ∵∠ACD=∠B+∠BAC=∠ACE+∠DCE, ∴∠BAC=∠DCE. ∵∠BAC=α,∠DCE=β, ∴α=β; ②分三种情况: (Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下: 同理可证明:△ABD≌△ACE(SAS), ∴∠ADB=∠AEC,∠ABC=∠ACE. ∵∠ADC+∠ADB=180°, ∴∠ADC+∠AEC=180°, ∴∠DAE+∠DCE=180°. ∵∠BAC=∠DAE=α,∠DCE=β, ∴α+β=180°; (Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下: 同理可证明:△ABD≌△ACE(SAS), ∴∠ABD=∠ACE. ∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC, ∴∠ACD+∠DCE=∠ACD+∠BAC, ∴∠BAC=∠DCE. ∵∠BAC=α,∠DCE=β, ∴α=β; (Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β; 综上所述:当点D在BC上移动时,α=β或α+β=180°; (3)∠ACB=60°.理由如下: ∵当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β, 即∠BAC=∠DCE. ∵CE∥AB, ∴∠ABC=∠DCE, ∴∠ABC=∠BAC. ∵AB=AC, ∴∠ABC=∠ACB=∠BAC, ∴△ABC是等边三角形, ∴∠ACB=60°; ∵当D在线段BC上时,α+β=180°, 即∠BAC+∠DCE=180°. ∵CE∥AB, ∴∠ABC+∠DCE=180°, ∴∠ABC=∠BAC. ∵AB=AC, ∴∠ABC=∠ACB=∠BAC, ∴△ABC是等边三角形, ∴∠ACB=60°; 综上所述:当CE∥AB时,若△ABD中最小角为15°,∠ACB的度数为60°. 【点睛】 本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键. 8.数学活动课上,老师出了这样一个题目:“已知:于,点、分别在和上,作线段和(如图1),使.求证:”. (1)聪聪同学给出一种证明问题的辅助线:如图2,过作,交于.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点在直线下方,且知,直接写出和之间的数量关系. 解析:(1)见解析;(2) 【解析】 【分析】 (1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:,,再证明,可得结论; (2)根据平行线的性质和三角形的外角性质可得结论. 【详解】 解:(1)证明:如图2,过作,交于, ,, , , , , , ; (2)解:,理由如下: 如图3,, , ,, , ∴. 【点睛】 本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键. 9.探索发现: …… 根据你发现的规律,回答下列问题: (1)= ,= ; (2)利用你发现的规律计算: (3)利用规律解方程: 解析:(1);(2);(3)见解析. 【解析】 【分析】 (1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和 (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和. (3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可. 【详解】 解:(1), ; 故答案为 (2)原式= ; (3)已知等式整理得: 所以,原方程即: , 方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1, 解得:x=3, 检验:把x=3代入x(x+5)=24≠0, ∴原方程的解为:x=3. 【点睛】 本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点. 10.在中,若存在一个内角角度,是另外一个内角角度的倍(为大于1的正整数),则称为倍角三角形.例如,在中,,,,可知,所以为3倍角三角形. (1)在中,,,则为________倍角三角形; (2)若是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的,求的最小内角. (3)若是2倍角三角形,且,请直接写出的最小内角的取值范围. 解析:(1)4;(2)的最小内角为15°或9°或;(3)30°<x<45°. 【解析】 【分析】 (1)根据三角形内角和定理求出∠C的度数,再根据倍角三角形的定义判断即可得到答案; (2) 根据△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答即可得到答案; (3) 可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围. 【详解】 解:(1)∵在中,,, ∴∠C=180°-55°-25°=100°, ∴∠C=4∠B, 故为4倍角三角形; (2) 设其中一个内角为x°,3倍角为3x°,则另外一个内角为: ①当小的内角的度数是3倍内角的余角的度数的时, 即:x=(90°-3x), 解得:x=15°, ②3倍内角的度数是小内角的余角的度数的时, 即:3x=(90°-x),解得:x=9°, ③当时, 解得:, 此时:=,因此为最小内角, 因此,△DEF的最小内角是9°或15°或. (3) 设最小内角为x,则2倍内角为2x,第三个内角为(180°-3x),由题意得: 2x<90°且180°-3x<90°, ∴30°<x<45°, 答:△MNP的最小内角的取值范围是30°<x<45°. 11.如图,若要判定纸带两条边线a,b是否互相平行,我们可以采用将纸条沿AB折叠的方式来进行探究. (1)如图1,展开后,测得,则可判定a//b,请写出判定的依据_________; (2)如图2,若要使a//b,则与应该满足的关系是_________; (3)如图3,纸带两条边线a,b互相平行,折叠后的边线b与a交于点C,若将纸带沿(,分别在边线a,b上)再次折叠,折叠后的边线b与a交于点,AB//,,求出的长. 解析:(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10 【解析】 【分析】 (1)根据平行线的判定定理,即可得到答案; (2)由折叠的性质得:∠3=∠4,若a∥b,则∠3=∠2,结合三角形内角和定理,即可得到答案; (3)分两种情况:①当B1在B的左侧时,如图2,当B1在B的右侧时,如图3,分别求出的长,即可得到答案. 【详解】 (1)∵, ∴a∥b(内错角相等,两直线平行), 故答案是:内错角相等,两直线平行; (2)如图1,由折叠的性质得:∠3=∠4, 若a∥b,则∠3=∠2, ∴∠4=∠2, ∵∠2+∠4+∠1=180°, ∴∠1+2∠2=180°, ∴要使a∥b,则与应该满足的关系是:∠1+2∠2=180°. 故答案是:∠1+2∠2=180°; (3)①当B1在B的左侧时,如图2, ∵AB//,a∥b, ∴AA1=BB1=3, ∴=AC- AA1=7-3=4; ②当B1在B的右侧时,如图3, ∵AB//,a∥b, ∴AA1=BB1=3, ∴=AC+AA1=7+3=10. 综上所述:=4或10. 【点睛】 本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键. 12.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考) 我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究. (深入探究) 第一种情况:当∠B是直角时,△ABC≌△DEF. (1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF. (2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等. (3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明. 解析:(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等. 【解析】 【分析】 (1)根据直角三角形全等的方法“HL”证明; (2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等; (3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等; (4)根据三种情况结论,∠B不小于∠A即可. 【详解】 (1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL. (2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足. ∵∠ABC、∠DEF都是钝角 ∴G、H分别在AB、DE的延长线上. ∵CG⊥AG,FH⊥DH, ∴∠CGA=∠FHD=90°. ∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF, ∴∠CBG=∠FEH. 在△BCG和△EFH中, ∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF, ∴△BCG≌△EFH. ∴CG=FH. 又∵AC=DF.∴Rt△ACG≌△DFH. ∴∠A=∠D. 在△ABC和△DEF中, ∵∠ABC=∠DEF,∠A=∠D,AC=DF, ∴△ABC≌△DEF. (3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等. 【点睛】 本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细. 13.在中,,,是的角平分线,于点. (1)如图1,连接,求证:是等边三角形; (2)如图2,点是线段上的一点(不与点重合),以为一边,在下方作,交延长线于点.求证:; (3)如图3,点是线段上的点,以为一边,在的下方作,交延长线于点.直接写出,与数量之间的关系. 解析:(1)证明见解析;(2)证明见解析;(3)结论:,证明见解析. 【解析】 【分析】 (1)先根据直角三角形的性质得出,再根据角平分线的性质可得,然后根据三角形的判定定理与性质可得,最后根据等边三角形的判定即可得证; (2)如图(见解析),延长ED使得,连接MF,先根据直角三角形的性质、等边三角形的判定得出是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证; (3)如图(见解析),参照题(2),先证是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证. 【详解】 (1) 是的角平分线, 在和中, 是等边三角形; (2)如图,延长ED使得,连接MF ,是的角平分线, 是等边三角形 ,即 在和中, ,即 即; (3)结论:,证明过程如下: 如图,延长BD使得,连接NH 由(2)可知, 是等边三角形 ,即 在和中, ,即 即. 【点睛】 本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键. 14.如图,中,,,点为射线上一动点,连结,作且. (1)如图1,过点作交于点,求证:; (2)如图2,连结交于点,若,,求证:点为中点. (3)当点在射线上,连结与直线交于点,若,,则______.(直接写出结果) 解析:(1)见解析;(2)见解析;(3)或 【解析】 【分析】 (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论; (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案; (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可. 【详解】 解:(1)证明:∵FD⊥AC, ∴∠FDA=90°, ∴∠DFA+∠DAF=90°, 同理,∠CAE+∠DAF=90°, ∴∠DFA=∠CAE, 在△AFD和△EAC中, , ∴△AFD≌△EAC(AAS), ∴DF=AC, ∵AC=BC, ∴FD=BC; (2)作FD⊥AC于D, 由(1)得,FD=AC=BC,AD=CE, 在△FDG和△BCG中, , ∴△FDG≌△BCG(AAS), ∴DG=CG=1, ∴AD=2, ∴CE=2, ∵BC=AC=AG+CG=4, ∴E点为BC中点; (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D, BC=AC=4,CE=CB+BE=7, 由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB, ∴CG=GD,AD=CE=7, ∴CG=DG=1.5, ∴, 同理,当点E在线段BC上时,, 故答案为:或. 【点睛】 本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 15.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①. (1)求证:∠ACN=∠AMC; (2)记△ANC得面积为5,记△ABC得面积为5.求证:; (3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程) 解析:(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析. 【解析】 【分析】 (1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM; (2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解; (3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP. 【详解】 (1)∵∠BAC=45°, ∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM. ∵∠NCM=135°, ∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC; (2)过点N作NE⊥AC于E, ∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN, ∴△NEC≌△CDM(AAS), ∴NE=CD,CE=DM; ∵S1AC•NE,S2AB•CD, ∴; (3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立, 理由如下:过点N作NE⊥AC于E, 由(2)可得NE=CD,CE=DM. ∵AC=2BD,BP=BM,CE=DM, ∴AC﹣CE=BD+BD﹣DM, ∴AE=BD+BP=DP. ∵NE=CD,∠NEA=∠CDP=90°,AE=DP, ∴△NEA≌△CDP(SAS), ∴AN=PC. 【点睛】 本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键. 二、选择题 16.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A.0.65×108 B.6.5×107 C.6.5×108 D.65×106 解析:B 【解析】 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 详解:65 000 000=6.5×107. 故选B. 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 17.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( ) A.点M B.点N C.点P D.点Q 解析:B 【解析】 【分析】 【详解】 ∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q, ∴原点在点P与N之间, ∴这四个数中绝对值最小的数对应的点是点N. 故选B. 18.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( ) A.3a+b B.3a-b C.a+3b D.2a+2b 解析:A 【解析】 【分析】 依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和. 【详解】 ∵线段AB长度为a, ∴AB=AC+CD+DB=a, 又∵CD长度为b, ∴AD+CB=a+b, ∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b, 故选A. 【点睛】 本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段. 19. =( ) A.1 B.2 C.3 D.4 解析:B 【解析】 【分析】 根据算术平方根的概念可得出答案. 【详解】 解:根据题意可得: , 故答案为:B. 【点睛】 本题考查算术平方根的概念,解题关键在于对其概念的理解. 20.将连续的奇数1、3、5、7、…、,按一定规律排成如表: 图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A.22 B.70 C.182 D.206 解析:D 【解析】 【分析】 根据题意设T字框第一行中间数为,则其余三数分别为,,, 根据其相邻数字之间都是奇数,进而得出的个位数只能是3或5或7,然后把T字框中的数字相加把x代入即可得出答案. 【详解】 设T字框第一行中间数为,则其余三数分别为,, ,,这三个数在同一行 的个位数只能是3或5或7 T字框中四个数字之和为 A.令 解得,符合要求; B.令 解得,符合要求; C.令解得,符合要求; D.令解得,因为, , 不在同一行,所以不符合要求. 故选D. 【点睛】 本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可. 21.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是( ) A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b 解析:D 【解析】 【分析】 根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论. 【详解】 解:∵由图可知a<0<b, ∴ab<0,即-ab>0 又∵|a|>|b|, ∴a<﹣b. 故选:D. 【点睛】 本题考查的是数轴,熟知数轴上两点间的距离公式是解- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津 外国语大学 附属 外国语学校 年级 上册 压轴 数学模拟 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文