反比例函数的图象和性质.doc
《反比例函数的图象和性质.doc》由会员分享,可在线阅读,更多相关《反比例函数的图象和性质.doc(6页珍藏版)》请在咨信网上搜索。
17.4.2 反比例函数的图象和性质 (一)本课目标 1.了解反比例函数图象的形状特征. 2.会画反比例函数的图象. 3.经历探究反比例函数性质的过程,掌握反比例函数的性质. 4.学会利用反比例函数的性质解决简单的实际问题. (二)教学流程 1.复习导入 (1)反比例函数是怎样定义的? (2)确定反比例函数的解析式需要什么条件? 2.课前热身 请同学们展示各自在上节课实践活动中所画出的问题2的函数图象,比一比谁画得最好? (学生互评在上节课的实践活动中所画出的问题2的函数图象, 形成对反比例函数图象的初步感形认识.) 3.合作探究 (1)整体感知 我们知道一次函数y=kx+b(k≠0)的图象是直线,其性质随着k的正负发生变化, 那么反比例函数y= (k≠0)的图象又具有什么特征?其性质是否随着k 的正负发生变化呢?本课我们着重探讨这两个问题. (2)四边互动 互动1 师:利用多媒体演示幻灯片. 【例1】画出函数y= 的图象. 师:在未知函数图象的形状特征时,我们画函数的图象通常用什么方法? 这个函数自变量的取值范围是什么?由此猜想这个函数的图象是连在一起的吗? 用描点法画该函数的图象,在列表应注意哪些? 生:逐个举手回答问题,达成共识. 师:利用多媒体展现画图过程. (1)列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值表: ──┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬── x │…│-6│-3│-2│-1│…│1 │2 │3 │6 │… ──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼── y │…│-1│-2│-3│-6│…│6 │3 │2 │1 │… ──┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴── (2)描点:由这些有序实数对,可以在直角坐标系中描出相应的点(-6,-1),(-3,-2),(-2,-3)等. (3)连线:用光滑曲线将各点依次连起来,就得到反比例函数的图象,如图所示: 师:请同学们用透明纸放在课本的该函数图象上复制这个图象,并用大头钉固定上下坐标系原点,再把上面的图象绕着原点旋转180°,结果你发现什么现象? 生:动手操作,并提出发现的问题. 师:利用多媒体演示. 试一试:在课本图17.4.1所在坐标系中画出函数y=-的图象. 生:动手画图,交流画图的结果. 师:请同学们讨论下列问题. 讨论:(1)这个函数的图象在哪两个象限?和函数y= 的图象有什么不同? (2)反比例函数y= 图象在哪两个象限?由什么确定? 生:在小组内展开交流,然后各组推选代表回答提出的问题,在全班交流,让全体同学达成共识. 明确 概括:通过上述操作、讨论与交流,我们发现反比例函数的图象是两条曲线,且这两条曲线关于原点对称,这种图象通常称为双曲线(hyperbola). 反比例函数y= 图象的两个分支位居的象限与k的正负有关,当k>0时, 函数的图象分布在第一、三象限;当k<0时,函数的图象分布在第二、四象限. 互动2 师:利用多媒体演示课件:反比例函数图象上的点与两条坐标轴上对应点做同步运动. 请同学们观察反比例函数y= 和y=- 图象上点的运动情况,然后回答下列问题. (1)对于反比例函数y= ,其图象在每个象限内从左到右是上升的还是下降的? y的值随着x的变化将怎样变化? (2)对于反比例函数y=-,其图象在每个象限内从左到右是上升的还是下降的? y的值随着x的变化将怎样变化? 生:在观察的基础上,在小组内展开讨论,并概括归纳发现的现象,对提出的问题进行解答. 明确 通过观察可知,反比例函数y= 有下列性质:(1)当k>0时,函数的图象( 如图17-4-2所示)在每个象限内,曲线从左向右下降,也就是在每个象限内y随x 的增加而减小;(2)当k<0时,函数的图象(如图17-4-2所示)在每个象限内, 曲线从左向右上升,也就是在每个象限内y随x的增加而增大. 互动3 师:利用多媒体演示幻灯片. 已知y是x的反比例函数,当x=2时,y= ,求这个反比例函数的表达式. 师:我们在学习一次函数时,已经学会了应用待定系数法求一次函数的表达式.同样,我们是不是也可以用待定系数法求反比例函数的表达式呢? 生:可以. 设其表达式为y=,因为当x=2时,y=,所以=,所以k=. 所以这个反比例函数的表达式为y= 互动4 师:利用多媒体演示幻灯片. 已知反比例函数y=在第一象限内的图象如图所示,点M、N是图象上的两个不同点,分别过点M、N作x轴的垂线,垂足分别为A、B,试探究△MOA的面积S △MOA与△NOB的面积S△NOB之间的大小关系. 师:(点拨)如果设点M、N的坐标分别位(x1,y1)和(x2,y2),那么S△MOA与x1 、 y1之间存在怎样的关系?x1·y1的值是多少?S△NOB与x2,y2呢? 生:在讨论交流的基础上,回答问题,并着手尝试解决问题,最后交流解答的过程与结果. 明确 因为点(x1,y1)在该反比例函数图象上,所以y1=,得x1·y1=3, S △MOA=OA·MA=,同理S△NOB=,所以S△MOA=S△NOB. 归纳可知:过反比例函数图象上任意一点作x轴的垂线,那么这点与垂足、 坐标系原点构成的三角形的面积是一个定值. 互动5 师:利用多媒体演示. 已知点A(-3,a)、B(-2,b)、C(4,c)在双曲线y=-上,请把a、b、c 按从小到大的顺序进行排列. 生:动手操作,操作完毕把个人所得结果在小组内展开交流. 师:请同学们画出该双曲线的草图,验证你的结论,从中你发现什么问题? 生:动手画图,验证各自解答的结果. 明确 许多同学直接利用反比例函数的性质,得出错误的结论:c<b<a. 原因是没有理解反比例函数的性质“当k<0时,在每个象限内y随x的增加而增大”.在同一个象限内y随x的增加而增大,并不是说在整个坐标平面内y随x的增加而增大.因此,在比较反比例函数值的大小时,要分清对应的自变量的值是否在x轴的同一个方向上(或几个点是否在同一个象限),如果不在同一个方向上,不能直接应用反比例函数的性质. 4.达标反馈 (多媒体演示) (1)写出一个反比例函数,使它的图象在第二、四象限,这个函数解析式为y= (2)如图所示,直线y=kx与双曲线y=-相交于点A、B,过点A作AC⊥y轴于点C,则△ABC的面积为 6. (3)已知反比例函数y= 的两点(x1,y1),(x2,y2),当x1<0<x2时,y1<y2,则m 的取值范围是(D) A.m<0 B.m>0 C.m>3 D.m<3 (4)下列四个函数中,当x>0时,y随x的增大而减小的是(D) A.y=2x B.y=x+3 C.y=- D.y= 5.学习小结 (1)内容总结 反比例函数 图象特征、画法 性质 (2)方法归纳 画反比例函数的图象,只能用描点法,利用反比例函数的性质比较大小时, 要注意对应的点是否在同一个象限内. (三)延伸拓展 1.链接生活 某课外小组在做气体实验时,获得压强p(帕)与体积v(cm3)之间的下列对应数据: ┌───┬─┬─┬─┬─┬──┬──┬─┐ │p(帕) │…│1 │2 │3 │4 │5 │…│ ├───┼─┼─┼─┼─┼──┼──┼─┤ │v(cm3)│…│6 │3 │2 │1.5 │1.2 │…│ └───┴─┴─┴─┴─┴──┴──┴─┘ 根据表中提供的信息,回答下列问题: (1)在坐标系中描出表中各点,猜想p与v之间的关系,并求出函数解析式; (2)当气体的体积是12cm3时,压强是多少? 2.实践探索 (1)实践活动 收集反比例函数在社会生活中应用的实例2个. (2)巩固练习 课本第58页练习第1题和第2题和习题17.4第3题. (四)板书设计 课题 反比例函数图象的特征及图象的画法 反比例函数的性质 投影幕 6 / 6- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 图象 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文