人教版七年级下册数学期末解答题压轴题及答案.doc
《人教版七年级下册数学期末解答题压轴题及答案.doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末解答题压轴题及答案.doc(35页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末解答题压轴题及答案 一、解答题 1.已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 2.如图是一块正方形纸片. (1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm. (2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号) (3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由? 3.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 4.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 5.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二、解答题 6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 7.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 8.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 9.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 10.问题情境: (1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答. 问题迁移: (2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由; (3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明. 三、解答题 11.如图1,点O在上,,射线交于点C,已知m,n满足:. (1)试说明//的理由; (2)如图2,平分,平分,直线、交于点E,则______; (3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论. 12.综合与探究(问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动. (1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系; (问题迁移) (2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动. ①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由; ②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系. 13.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 14.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 15.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 四、解答题 16.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 17.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 18.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 19.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 20.已知,,点为射线上一点. (1)如图1,写出、、之间的数量关系并证明; (2)如图2,当点在延长线上时,求证:; (3)如图3,平分,交于点,交于点,且:,,,求的度数. 【参考答案】 一、解答题 1.符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b 解析:符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b=7350, ∴b=70,或b=-70(舍去), 即宽为70米,长为1.5×70=105米, ∵100≤105≤110,64≤70≤75, ∴符合国际标准球场的长宽标准. 【点睛】 本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提. 2.(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采 解析:(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】 解:(1)由已知AB2=1,则AB=1, 由勾股定理,AC=; 故答案为:. (2)由圆面积公式,可得圆半径为,周长为,正方形周长为4. ;即C圆<C正; 故答案为:< (3)不能; 由已知设长方形长和宽为3xcm和2xcm ∴长方形面积为:2x•3x=12 解得x= ∴长方形长边为3>4 ∴他不能裁出. 【点睛】 本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键. 3.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 4.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 5.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二、解答题 6.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出 解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 7.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以 解析:(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 8.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 9.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质 解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°; (2)过过作交于,,推出,根据平行线的性质得出,即可得出答案; (3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案. 【详解】 解:(1)过作, , , ,, , ,, ; (2),理由如下: 如图3,过作交于, , , ,, ,, 又 ; (3)①当在延长线时(点不与点重合),; 理由:如图4,过作交于, , , ,, ,, , 又, ; ②当在之间时(点不与点,重合),. 理由:如图5,过作交于, , , ,, ,, , 又 . 【点睛】 本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角. 三、解答题 11.(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数; (3)不变,分三种情况讨论即可. 【详解】 (1)∵,,且 ∴, ∴m=20,n=70 ∴∠MOC=90゜-∠AOM=70゜ ∴∠MOC=∠OCQ=70゜ ∴MN∥PQ (2)∵∠AON=180゜-∠AOM=160゜ 又∵平分,平分 ∴, ∵ ∴ ∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜ 故答案为:45. (3)不变,理由如下: 如图,当0゜<α<20゜时, ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠MOC=∠OCQ=2x ∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON ∴∠DON=45゜+x ∵∠MOE=∠DON=45゜+x ∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x ∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜ 当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜ 当20゜<α<90゜时,如图 ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠NOC=180゜-∠OCQ=180゜-2x ∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON ∴∠AOE=135゜-x ∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜ ∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜ 综上所述,∠EOF的度数不变. 【点睛】 本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便. 12.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠ 解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°; (2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是; ②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答. 【详解】 解:(1)∠PAF+∠PBN+∠APB=360°,理由如下: 作PC∥EF,如图1, ∵PC∥EF,EF∥MN, ∴PC∥MN, ∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°, ∴∠PAF+∠APC+∠PBN+∠CPB=360°, ∴∠PAF+∠PBN+∠APB=360°; (2)①, 理由如下:如答图,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴ ②当P在OB之间时,,理由如下: 如备用图1,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 当P在OA的延长线上时,,理由如下: 如备用图2,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 综上所述,∠CPD,∠α,∠β之间的数量关系是或. 【点睛】 本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线. 13.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 14.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 15.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 四、解答题 16.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 17.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF 解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF=180°, 同理∠2+∠NEF=180° ∴∠1+∠2+∠MEN=360° 【应用】 (2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°; 由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1), 故答案是:900° , 180°(n-1); (3)过点O作SR∥AB, ∵AB∥CD, ∴SR∥CD, ∴∠AM1O=∠M1OR 同理∠C MnO=∠MnOR ∴∠A M1O+∠CMnO=∠M1OR+∠MnOR, ∴∠A M1O+∠CMnO=∠M1OMn=m°, ∵M1O平分∠AM1M2, ∴∠AM1M2=2∠A M1O, 同理∠CMnMn-1=2∠CMnO, ∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°, 又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1), ∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)° 点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要. 18.(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平 解析:(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 压轴 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文