人教版七年级下册数学期末测试试卷(含答案).doc
《人教版七年级下册数学期末测试试卷(含答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末测试试卷(含答案).doc(24页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末测试试卷(含答案) 一、选择题 1.的平方根是() A.2 B. C. D. 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A.树枝随着春风摇曳 B.值日学生拉动可移动黑板 C.行政楼电梯的升降 D.晚自修后学生两列队伍整齐排列笔直前行 3.在平面直角坐标系中,点P(﹣5,4)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中,假命题是( ) A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 B.在同一平面内,过一点有且只有一条直线与已知直线垂直 C.两条直线被第三条直线所截,同旁内角互补 D.两点的所有连线中,线段最短 5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 6.下列运算正确的是( ) A. B. C. D. 7.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为( ) A.55° B.45° C.40° D.35° 8.如图,在平面直角坐标系中,点A从原点O出发,按A→A1→A2→A3→A4→A5…依次不断移动,每次移动1个单位长度,则A2021的坐标为( ) A.(673,﹣1) B.(673,1) C.(674,﹣1) D.(674,1) 九、填空题 9.______. 十、填空题 10.若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=______ 十一、填空题 11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______. 十四、填空题 14.若,,…,是从0,1,2,这三个数中取值的一列数,,,则在,,…,中,取值为2的个数为___________. 十五、填空题 15.已知点,且点到两坐标轴的距离相等,则点的坐标是____. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.已知a+b=5,ab=2,求下列各式的值. (1)a2+b2; (2)(a﹣b)2. 十九、解答题 19.如图,,,求度数.完成说理过程并注明理由. 解:∵, ∴________( ) 又∵, ∴, ∴__________( ) ∴( ) ∵, ∴______度. 二十、解答题 20.如图,的三个顶点坐标分别为,,. (1)在平面直角坐标系中,画出; (2)将向下平移个单位长度,得到,并画出,并写出点的坐标. 二十一、解答题 21.请回答下列问题: (1)介于连续的两个整数和之间,且,那么 , ; (2)是的小数部分,是的整数部分,求 , ; (3)求的平方根. 二十二、解答题 22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 二十三、解答题 23.已知点C在射线OA上. (1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数; (2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示) (3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系. 二十四、解答题 24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧. (1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ; (2)射线AF为∠CAD的角平分线. ① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明; ② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 . 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 先计算出,再求出的平方根即可. 【详解】 解:∵, ∴的平方根是, 故选:B. 【点睛】 本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键. 2.A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直 解析:A 【分析】 根据平移的特点可得答案. 【详解】 解:A、树枝随着春风摇曳是旋转运动; B、值日学生拉动可移动黑板是平移运动; C、行政楼电梯的升降是平移运动; D、晚自修后学生两列队伍整齐排列笔直前行是平移运动; 故选A. 【点睛】 此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.B 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点P(﹣5,4)位于第二象限. 故选:B. 【点睛】 本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键. 4.C 【分析】 分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【详解】 A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行, 选项A是真命题,故不符合题意; B.在同一平面内,过一点有且只有一条直线与已知直线垂直, 选项B是真命题,故不符合题意; C.两条直线被第三条直线所截,同旁内角不一定互补, 选项C是假命题,故符合题意; D. 两点的所有连线中,线段最短, 选项D是真命题,故不符合题意. 故选:C. 【点睛】 本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理. 5.D 【分析】 根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④. 【详解】 解:,, , 平分, ,故①正确; , , ,故②正确; ,, ,故③正确; ,, ,故④正确. 正确为①②③④, 故选:D. 【点睛】 本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键. 6.C 【分析】 利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断. 【详解】 解:A、,故本选项错误; B、,故本选项错误; C、,故本选项正确; D、,故本选项错误; 故选:C. 【点睛】 此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键. 7.D 【分析】 先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论. 【详解】 解:如图,∵ABCD, ∴∠1=∠3=55°, ∵∠2+90°+∠3=180°, ∴∠2=35°, 故选:D. 【点睛】 本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键. 8.C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7 解析:C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…, 点坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5, 所以,前336次循环运动点共向右运动336×2=672个单位,且在x轴上, 再运动5次即向右移动2个单位,向下移动一个单位, 则A2021的坐标是(674,﹣1). 故选:C. 【点睛】 本题考查了平面直角坐标系点的规律,找到规律是解题的关键. 九、填空题 9.10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 解析:10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 十、填空题 10.1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b 解析:1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b)2017=(4-3)2017=1. 故答案为:1. 【点睛】 本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数. 十一、填空题 11.6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关 解析:6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关键. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定 解析:113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°. 【详解】 解:如图,设∠B′FE=x, ∵纸条沿EF折叠, ∴∠BFE=∠B′FE=x,∠AEF=∠A′EF, ∴∠BFC=∠BFE﹣∠CFE=x﹣21°, ∵纸条沿BF折叠, ∴∠C′FB=∠BFC=x﹣21°, 而∠B′FE+∠BFE+∠C′FE=180°, ∴x+x+x﹣21°=180°,解得x=67°, ∵A′D′∥B′C′, ∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°, ∴∠AEF=113°. 故答案为113°. 【点睛】 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题 14.508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为 解析:508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为1的个数是2019−1510=509, ∵, ∴2的个数为(1525−509)÷2=508个. 故答案为:508. 【点睛】 此题考查完全平方的性质,找出,,…,中为1的个数是解决问题的关键. 十五、填空题 15.或; 【分析】 根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案. 【详解】 解:∵点A到两坐标轴的距离相等,且点A为, ∴, ∴或, 解得:或, ∴点A的坐标为:或; 故答案为:或 解析:或; 【分析】 根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案. 【详解】 解:∵点A到两坐标轴的距离相等,且点A为, ∴, ∴或, 解得:或, ∴点A的坐标为:或; 故答案为:或; 【点睛】 本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点. 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1)21;(2)17 【分析】 (1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解; (1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解. 【详解】 解析:(1)21;(2)17 【分析】 (1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解; (1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解. 【详解】 解:(1)∵a+b=5,ab=2, ∴a2+b2=(a+b)2﹣2ab=52﹣2×2=21; (2))∵a+b=5,ab=2, ∴(a﹣b)2=a2+b2-2ab=21-2×2=17. 【点睛】 本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键. 十九、解答题 19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等 解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可. 【详解】 解:∵EF∥AD, ∴∠2=∠3(两直线平行,同位角相等). 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥DG(内错角相等,两直线平行). ∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补). ∵∠AGD=110°, ∴∠BAC=70度. 故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70. 【点睛】 本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析,A1(-2,-1). 【分析】 (1)先根据坐标描出A、B、C三点,然后顺次连接即可; (2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐 解析:(1)见解析;(2)见解析,A1(-2,-1). 【分析】 (1)先根据坐标描出A、B、C三点,然后顺次连接即可; (2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可. 【详解】 解:(1)如图:△ABC即为所求; (2)如图:即为所求,点A1的坐标为(-2,-1). 【点睛】 本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键. 二十一、解答题 21.(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即 解析:(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即可. 【详解】 解:(1)∵16<17<25, ∴4<<5, ∴a=4,b=5, 故答案为:4;5; (2)∵4<<5, ∴6<+2<7, 由此整数部分为6,小数部分为−4, ∴x=−4, ∵4<<5, ∴3<-1<4, ∴y=3; 故答案为:−4;3 (3)当x=−4,y=3时, ==64, ∴64的平方根为±8. 【点睛】 此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法. 二十二、解答题 22.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 二十三、解答题 23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2) 解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系; (3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′. 【详解】 解:(1)∵CD∥OE, ∴∠AOE=∠OCD=120°, ∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°; (2)∠OCD+∠BO′E′=360°-α. 证明:如图②,过O点作OF∥CD, ∵CD∥O′E′, ∴OF∥O′E′, ∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′, ∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α, ∴∠OCD+∠BO′E′=360°-α; (3)∠AOB=∠BO′E′. 证明:∵∠CPO′=90°, ∴PO′⊥CP, ∵PO′⊥OB, ∴CP∥OB, ∴∠PCO+∠AOB=180°, ∴2∠PCO=360°-2∠AOB, ∵CP是∠OCD的平分线, ∴∠OCD=2∠PCO=360°-2∠AOB, ∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB, ∴360°-2∠AOB+∠BO′E′=360°-∠AOB, ∴∠AOB=∠BO′E′. 【点睛】 此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键. 二十四、解答题 24.(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况, 解析:(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可. 【详解】 . 解:(1)设在上有一点N在点A的右侧,如图所示: ∵ ∴, ∴ ∴ (2)①. 证明:设,. ∴. ∵为的角平分线, ∴. ∵, ∴. ∴. ∴. ②当点在点右侧时,如图: 由①得: 又∵ ∴ ∵ ∴ 当点在点左侧,在右侧时,如图: ∵为的角平分线 ∴ ∵ ∴, ∵ ∴ ∴ ∵ ∴ 又∵ ∴ ∴ 当点和在点左侧时,设在上有一点在点的右侧如图: 此时仍有, ∴ ∴ 综合所述:或 【点睛】 本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 测试 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文