2022年人教版中学七7年级下册数学期末试题含答案图文.doc
《2022年人教版中学七7年级下册数学期末试题含答案图文.doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末试题含答案图文.doc(25页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末试题含答案图文 一、选择题 1.如图,在所标识的角中,下列说法不正确的是( ) A.和互为补角 B.和是同位角 C.和是内错角 D.和是对顶角 2.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为( ) A.3 B.4 C.5 D.6 3.若点在第二象限,则点在第( )象限 A.一 B.二 C.三 D.四 4.下列命题中假命题有( ) ①两条直线被第三条直线所截,同位角相等 ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行 ③点到直线的垂线段叫做点到直线的距离 ④过一点有且只有一条直线与已知直线平行 ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行. A.5个 B.4个 C.3个 D.2个 5.如图,直线、相交于点,.若,则等于( ) A.70° B.110° C.90° D.120° 6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A.①② B.①③ C.①②③ D.①②④ 7.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 8.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是( ) A. B. C. D. 九、填空题 9.计算:﹣=_____. 十、填空题 10.在平面直角坐标系中,点与点关于轴对称,则的值是_____. 十一、填空题 11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________. 十二、填空题 12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°. 十三、填空题 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十四、填空题 14.对于有理数x、y,当x≥y时,规定x※y=yx;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______. 十五、填空题 15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________ 十六、填空题 16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________. 十七、解答题 17.计算下列各题: (1); (2)-×; (3)-++. 十八、解答题 18.求下列各式中x的值. (1)4x2﹣25=0; (2)(2x﹣1)3=﹣64. 十九、解答题 19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°. 请在括号内填写出证明依据. 证明:∵∠B=∠CGF(已知), ∴AB∥CD( ). ∵∠DGF=∠F(已知), ∴ //EF( ). ∴AB//EF( ). ∴∠B+∠F=180°( ). 二十、解答题 20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足. (1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标; (2)点的坐标为,的面积是的倍,求点的坐标. 二十一、解答题 21.数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答: (1)填空题:的整数部分是 ;小数部分是 (2)已知8+=x+y,其中x是一个整数,且0<y<1,求出2x+(y-)2012的值. 二十二、解答题 22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 二十三、解答题 23.问题情境: 如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°. 问题解决: (1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由; (2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系; (3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数. 二十四、解答题 24.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 二十五、解答题 25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角、内错角、邻补角、对顶角的定义求解判断即可. 【详解】 解:A、和是邻补角,故此选项不符合题意; B、和是同位角,故此选项不符合题意; C、和不是内错角,故此选项符合题意; D、和是对顶角,故此选项不符合题意. 故选:C. 【点睛】 此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 2.A 【分析】 根据平移的性质证明BE=CF即可解决问题. 【详解】 解:由平移的性质可知,BC=EF, ∴BE=CF, ∵BF=8,EC=2, ∴BE+CF=8﹣2=6, ∴CF=BE=3, 故选: 解析:A 【分析】 根据平移的性质证明BE=CF即可解决问题. 【详解】 解:由平移的性质可知,BC=EF, ∴BE=CF, ∵BF=8,EC=2, ∴BE+CF=8﹣2=6, ∴CF=BE=3, 故选:A. 【点睛】 本题考查平移的性质,掌握平移的性质是解题的关键. 3.C 【分析】 应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限. 【详解】 解:∵点在第二象限, ∴1+a<0,1-b>0; ∴a<-1, b-1<0, 即点在第三象限. 故选:C. 【点睛】 解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 4.B 【分析】 根据平行线的性质和判定,点到直线距离定义一一判断即可. 【详解】 解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件; ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确; ③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度; ④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点; ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内. 故选B. 【点睛】 本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义. 5.B 【分析】 先根据平行线的性质得到,然后根据平角的定义解答即可. 【详解】 解:∵, ∴, ∵, ∴. 故选:B. 【点睛】 本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键. 6.A 【分析】 根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可. 【详解】 ①两个无理数的和可能是有理数,说法正确 如:和是无理数,,0是有理数 ②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确 ③是二次二项式,说法错误 ④立方根是本身的数有0和,说法错误 综上,说法正确的是①② 故选:A. 【点睛】 本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键. 7.B 【分析】 如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③ ;由平行线的性质即可得到,,再由,即可判断④. 【详解】 解:①如图所示,过点E作EF//AB, ∵AB//CD, ∴AB//CD//EF, ∴∠A+∠AEF=180°,∠C+∠CEF=180°, ∴∠A+∠AEF+∠C+∠CEF=360°, 又∵∠AEF+∠CEF=∠AEC, ∴∠A+∠C+∠AEC=360°,故①错误; ②如图所示,过点P作PE//AB, ∵AB//CD, ∴AB//CD//PE, ∴∠A=∠APE=180°,∠C=∠CPE, 又∵∠APC=∠APE=∠CPE, ∴∠APC=∠A-∠C,故②正确; ③如图所示,过点E作EF//AB, ∵AB//CD, ∴AB//CD//EF, ∴∠A+∠AEF=180°,∠1=∠CEF, 又∵∠AEF+∠CEF=∠AEC, ∴180°-∠A+∠1=∠AEC,故③错误; ④∵, ∴,, ∵, ∴, ∴,故④正确; 故选B 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质 8.C 【分析】 求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解. 【详解】 解:由题意A1(3,0 解析:C 【分析】 求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解. 【详解】 解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••, 可以看出,9=,15=,21=, 得到规律:点A2n+1的横坐标为,其中的偶数, 点A2n+1的纵坐标等于横坐标的相反数+3, ,即, 故A2021的横坐标为,A2021的纵坐标为, ∴A2021(3033,-3030), 故选:C. 【点睛】 本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 九、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 十、填空题 10.4 【分析】 根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案. 【详解】 点与点关于轴对称, ,, 则a+b的值是:, 故答案为. 【点睛】 本题考查了关于x轴对称的 解析:4 【分析】 根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案. 【详解】 点与点关于轴对称, ,, 则a+b的值是:, 故答案为. 【点睛】 本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键. 十一、填空题 11.10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即 解析:10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解. 【详解】 解:当高AD在△ABC的内部时. ∵∠B=40°,∠C=60°, ∴∠BAC=180°-40°-60°=80°, ∵AE平分∠BAC, ∴∠BAE=∠BAC=40°, ∵AD⊥BC, ∴∠BDA=90°, ∴∠BAD=90°-∠B=50°, ∴∠EAD=∠BAD-∠BAE=50°-40°=10°. 当高AD在△ABC的外部时. 同法可得∠EAD=10°+30°=40° 故答案为10°或40°. 【点睛】 此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数 十二、填空题 12.33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠C 解析:33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠CAD=24°, ∴∠BAC=66°, ∵AE平分∠BAC, ∴∠BAE=∠CAE=33°, ∵AB∥DE, ∴∠E=∠BAE=33°, 故答案为33. 【点睛】 本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键. 十三、填空题 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题 14.或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m= 解析:或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m=2※m=36 当时,原式可化为 解得: ; 当时,原式可化为: 解得:; 综上所述,m的值为:或; 故答案为:16;或. 【点睛】 本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 十五、填空题 15.或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4) 解析:或 【分析】 已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标. 【详解】 ∵ ∴AB=8 ∵的面积为 ∴=16 ∴OC=4 ∴点的坐标为(0,4)或(0,-4) 故答案为:(0,4)或(0,-4) 【点睛】 本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 十六、填空题 16.(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单 解析:(0,2). 【分析】 利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答. 【详解】 解:由已知,正方形周长为16, ∵M、N速度分别为1单位/秒,3单位/秒, 则两个物体每次相遇时间间隔为=4秒, 则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0) ∵2021=4×505…1, ∴第2021次两个物体相遇位置为(0,2), 故答案为:(0,2). 【点睛】 本题考查了平面直角坐标系中点的规律,找到规律是解题的关键. 十七、解答题 17.(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要 解析:(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要考查实数的计算,解题的关键是熟知实数的性质. 十八、解答题 18.(1)x=;(2)x=. 【分析】 (1)利用平方根的定义求解; (2)利用立方根的定义求解. 【详解】 解:(1)4x2﹣25=0, 4x2=25, x2=, x=; (2)(2x﹣1)3=﹣64 解析:(1)x=;(2)x=. 【分析】 (1)利用平方根的定义求解; (2)利用立方根的定义求解. 【详解】 解:(1)4x2﹣25=0, 4x2=25, x2=, x=; (2)(2x﹣1)3=﹣64, 2x﹣1=﹣4, 2x=﹣3, x=. 【点睛】 本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键. 十九、解答题 19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF 解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补 【分析】 根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可. 【详解】 证明:∵∠B=∠CGF(已知), ∴AB∥CD(同位角相等,两直线平行), ∵∠DGF=∠F(已知 ), ∴CD∥EF(内错角相等,两直线平行), ∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ), ∴∠B+∠F=180°(两直线平行,同旁内角互补), 故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补. 【点睛】 本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键. 二十、解答题 20.(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,- 解析:(1)(-2,6);(2)(,)或(8,-4) 【分析】 (1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标; (2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标. 【详解】 解:(1)∵a没有平方根, ∴a<0, ∴-a>0, ∵点B到x轴的距离是点A到x轴距离的3倍, ∴, ∵a+b=4, ∴, 解得:a=-2或a=1(舍), ∴b=6,此时点B的坐标为(-2,6); (2)∵点A的坐标为(a,-a),点B坐标为(a,4-a), ∴AB=4,AB与y轴平行, ∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍, ∴点A、点B在y轴的右侧,即a>0, ∴, 解得:a=或a=8, ∴B点坐标为(,)或(8,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质. 二十一、解答题 21.(1)1;-1(2)19 【分析】 (1)根据已知的条件就可以求出; (2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答. 【详解】 解:(1)∵1<<2, ∴的整数部分是1;小 解析:(1)1;-1(2)19 【分析】 (1)根据已知的条件就可以求出; (2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答. 【详解】 解:(1)∵1<<2, ∴的整数部分是1;小数部分是-1; (2)解:∵1<<2, ∴9<8+<10, ∵8+=x+y,且x是一个整数,0<y<1, ∴x=9,y=8+﹣9=﹣1, ∴2x+(y-)2012=2×9+(﹣1-)2012=18+1=19. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算的范围. 二十二、解答题 22.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 二十三、解答题 23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线 解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解; (3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解. 【详解】 解:(1)如图2,过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=α,∠CPE=β, ∴∠APC=∠APE+∠CPE=α+β. (2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时, ∵AB∥CD,∠PAB=α, ∴∠1=∠PAB=α, ∵∠1=∠APC+∠PCD,∠PCD=β, ∴α=∠APC+β, ∴∠APC=α-β; 如图,在(1)的条件下,如果点P在线段NM的延长线上运动时, ∵AB∥CD,∠PCD=β, ∴∠2=∠PCD=β, ∵∠2=∠PAB+∠APC,∠PAB=α, ∴β=α+∠APC, ∴∠APC=β-α; (3)如图3,过点P,Q分别作PE∥AB,QF∥AB, ∵AB∥CD, ∴AB∥QF∥PE∥CD, ∴∠BAP=∠APE,∠PCD=∠EPC, ∵∠APC=116°, ∴∠BAP+∠PCD=116°, ∵AQ平分∠BAP,CQ平分∠PCD, ∴∠BAQ=∠BAP,∠DCQ=∠PCD, ∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°, ∵AB∥QF∥CD, ∴∠BAQ=∠AQF,∠DCQ=∠CQF, ∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°, ∴∠AQC=58°. 【点睛】 此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二十四、解答题 24.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可; (2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可; (3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可. 【详解】 解:当108°的角是另一个内角的3倍时, 最小角为180°﹣108°﹣108÷3°=36°, 当180°﹣108°=72°的角是另一个内角的3倍时, 最小角为72°÷(1+3)=18°, 因此,这个“梦想三角形”的最小内角的度数为36°或18°. 故答案为:18°或36°. (2)△AOB、△AOC都是“梦想三角形” 证明:∵AB⊥OM, ∴∠OAB=90°, ∴∠ABO=90°﹣∠MON=30°, ∴∠OAB=3∠ABO, ∴△AOB为“梦想三角形”, ∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON, ∴∠OAC=80°﹣60°=20°, ∴∠AOB=3∠OAC, ∴△AOC是“梦想三角形”. (3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°, ∴∠EFC=∠ADC, ∴AD∥EF, ∴∠DEF=∠ADE, ∵∠DEF=∠B, ∴∠B=∠ADE, ∴DE∥BC, ∴∠CDE=∠BCD, ∵AE平分∠ADC, ∴∠ADE=∠CDE, ∴∠B=∠BCD, ∵△BCD是“梦想三角形”, ∴∠BDC=3∠B,或∠B=3∠BDC, ∵∠BDC+∠BCD+∠B=180°, ∴∠B=36°或∠B=. 【点睛】 本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 试题 答案 图文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文