南京秦淮外国语学校七年级下册数学期末试卷测试卷-(word版含解析).doc
《南京秦淮外国语学校七年级下册数学期末试卷测试卷-(word版含解析).doc》由会员分享,可在线阅读,更多相关《南京秦淮外国语学校七年级下册数学期末试卷测试卷-(word版含解析).doc(30页珍藏版)》请在咨信网上搜索。
南京秦淮外国语学校七年级下册数学期末试卷测试卷 (word版,含解析) 一、解答题 1.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 2.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 3.已知点C在射线OA上. (1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数; (2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示) (3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系. 4.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 5.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F. (1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数; (2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数; (3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系 二、解答题 6.如图1,点O在上,,射线交于点C,已知m,n满足:. (1)试说明//的理由; (2)如图2,平分,平分,直线、交于点E,则______; (3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论. 7.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质来求∠APC. (1)按小明的思路,易求得∠APC的度数为 度; (2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 8.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 9.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周. (1)几秒后与重合? (2)如图2,经过秒后,,求此时的值. (3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由. (4)在(3)的条件下,求经过多长时间平分?请画图并说明理由. 10.已知:如图1,,点,分别为,上一点. (1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明). 三、解答题 11.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 12.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分 (1)求的度数; (2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由. 13.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 14.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 15.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、解答题 1.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后 解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 2.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 3.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2) 解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′ 【分析】 (1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数; (2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系; (3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′. 【详解】 解:(1)∵CD∥OE, ∴∠AOE=∠OCD=120°, ∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°; (2)∠OCD+∠BO′E′=360°-α. 证明:如图②,过O点作OF∥CD, ∵CD∥O′E′, ∴OF∥O′E′, ∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′, ∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α, ∴∠OCD+∠BO′E′=360°-α; (3)∠AOB=∠BO′E′. 证明:∵∠CPO′=90°, ∴PO′⊥CP, ∵PO′⊥OB, ∴CP∥OB, ∴∠PCO+∠AOB=180°, ∴2∠PCO=360°-2∠AOB, ∵CP是∠OCD的平分线, ∴∠OCD=2∠PCO=360°-2∠AOB, ∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB, ∴360°-2∠AOB+∠BO′E′=360°-∠AOB, ∴∠AOB=∠BO′E′. 【点睛】 此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键. 4.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ 解析:(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°; (3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1; (4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案. 【详解】 解:(1)∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°, ∴∠ABN=120°; (2)∵AM∥BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°-x°, ∴∠ABP+∠PBN=180°-x°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=180°-x°, ∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°; (3)不变,∠ADB:∠APB=. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1, ∴∠ADB:∠APB=; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠ABC,∠PBN=2∠DBN, ∴∠ABP=∠PBN=2∠DBN=∠ABN, ∵AM∥BN, ∴∠A+∠ABN=180°, ∴∠A+∠ABN=90°, ∴∠A+2∠DBN=90°, ∴∠A+∠DBN=(∠A+2∠DBN)=45°. 【点睛】 本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 5.(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+ 解析:(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数; (2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解; (3)由(2)的方法可得到2n∠M+∠BED=360°. 【详解】 解:(1)如图1,作,,连结, , , ,,,, , , , 和的角平分线相交于, , , 、分别是和的角平分线, ,, , ; (2)如图1,,, ,, 与两个角的角平分线相交于点, ,, , , , ; (3)由(2)结论可得,,, 则. 【点睛】 本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 二、解答题 6.(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数; (3)不变,分三种情况讨论即可. 【详解】 (1)∵,,且 ∴, ∴m=20,n=70 ∴∠MOC=90゜-∠AOM=70゜ ∴∠MOC=∠OCQ=70゜ ∴MN∥PQ (2)∵∠AON=180゜-∠AOM=160゜ 又∵平分,平分 ∴, ∵ ∴ ∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜ 故答案为:45. (3)不变,理由如下: 如图,当0゜<α<20゜时, ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠MOC=∠OCQ=2x ∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON ∴∠DON=45゜+x ∵∠MOE=∠DON=45゜+x ∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x ∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜ 当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜ 当20゜<α<90゜时,如图 ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠NOC=180゜-∠OCQ=180゜-2x ∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON ∴∠AOE=135゜-x ∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜ ∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜ 综上所述,∠EOF的度数不变. 【点睛】 本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便. 7.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β 【分析】 (1)过P作PE∥AB,通过平行线性质求∠A 解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β 【分析】 (1)过P作PE∥AB,通过平行线性质求∠APC即可; (2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案. 【详解】 解:(1)过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠A+∠APE=180°,∠C+∠CPE=180°, ∵∠PAB=130°,∠PCD=120°, ∴∠APE=50°,∠CPE=60°, ∴∠APC=∠APE+∠CPE=110°. 故答案为110°; (2)∠CPD=∠α+∠β, 理由是:如图3,过P作PE∥AD交CD于E, ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β; (3)当P在BA延长线时,∠CPD=∠β-∠α, 理由是:如图4,过P作PE∥AD交CD于E, ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE =∠β-∠α; 当P在AB延长线时,∠CPD=∠α-∠β, 理由是:如图5,过P作PE∥AD交CD于E, ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE -∠CPE =∠α-∠β. 【点睛】 本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键. 8.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 9.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析 【分析】 (1)用角的度数除以转动速度即可得; (2)求出∠AON=60°,结合旋转速度可得时间t; (3)设∠AON=3 解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析 【分析】 (1)用角的度数除以转动速度即可得; (2)求出∠AON=60°,结合旋转速度可得时间t; (3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可; (4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可. 【详解】 解:(1)∵30÷3=10, ∴10秒后ON与OC重合; (2)∵MN∥AB ∴∠BOM=∠M=30°, ∵∠AON+∠BOM=90°, ∴∠AON=60°, ∴t=60÷3=20 ∴经过t秒后,MN∥AB,t=20秒. (3)如图3所示: ∵∠AON+∠BOM=90°,∠BOC=∠BOM, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON=3t,则∠AOC=30°+6t, ∵OC与OM重合, ∵∠AOC+∠BOC=180°, 可得:(30°+6t)+(90°-3t)=180°, 解得:t=20秒; 即经过20秒时间OC与OM重合; (4)如图4所示: ∵∠AON+∠BOM=90°,∠BOC=∠COM, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°, ∴∠BOC=∠COM=∠BOM=(90°-3t), 由题意得:180°-(30°+6t)=( 90°-3t), 解得:t=秒, 即经过秒OC平分∠MOB. 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键. 10.(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E 解析:(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°. 证明:过点M作MP∥AB. ∵AB∥CD, ∴MP∥CD. ∴∠4=∠3. ∵MP∥AB, ∴∠1=∠2. ∵∠EMF=∠2+∠3, ∴∠EMF=∠1+∠4. ∴∠EMF=∠AEM+∠MFC; 证明:过点M作MQ∥AB. ∵AB∥CD, ∴MQ∥CD. ∴∠CFM+∠1=180°; ∵MQ∥AB, ∴∠AEM+∠2=180°. ∴∠CFM+∠1+∠AEM+∠2=360°. ∵∠EMF=∠1+∠2, ∴∠AEM+∠EMF+∠MFC=360°; (2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°; 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM=∠1,∠CFN=∠4,MP∥NQ, ∴∠2+∠3=180°, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4, ∴∠EMN+∠MNF-∠AEM-∠NFC =∠1+∠2+∠3+∠4-∠1-∠4 =∠2+∠3 =180°; 如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°. 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ, ∴∠2=∠3, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4, ∴∠EMN-∠MNF+∠AEM+∠NFC =∠1+∠2-∠3-∠4+180°-∠1+∠4 =180°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 三、解答题 11.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键. 12.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2 解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2. (3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可. 【详解】 (1)∵CB∥OA ∴∠C+∠COA=180° ∵∠C=100° ∴∠COA=180°-∠C=80° ∵∠FOB=∠AOB,OE平分∠COF ∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°; ∴∠EOB=40°; (2)∠OBC:∠OFC的值不发生变化 ∵CB∥OA ∴∠OBC=∠BOA,∠OFC=∠FOA ∵∠FOB=∠AOB ∴∠FOA=2∠BOA ∴∠OFC=2∠OBC ∴∠OBC:∠OFC=1:2 (3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA. 设∠AOB=x, ∵CB∥AO, ∴∠CBO=∠AOB=x, ∵CB∥OA,AB∥OC, ∴∠OAB+∠ABC=180°,∠C+∠ABC=180° ∴∠OAB=∠C=100°. ∵∠OEC=∠CBO+∠EOB=x+40°, ∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x, ∴x+40°=80°-x, ∴x=20°, ∴∠OEC=∠OBA=80°-20°=60°. 【点睛】 本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键. 13.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF 解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF=180°, 同理∠2+∠NEF=180° ∴∠1+∠2+∠MEN=360° 【应用】 (2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°; 由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1), 故答案是:900° , 180°(n-1); (3)过点O作SR∥AB, ∵AB∥CD, ∴SR∥CD, ∴∠AM1O=∠M1OR 同理∠C MnO=∠MnOR ∴∠A M1O+∠CMnO=∠M1OR+∠MnOR, ∴∠A M1O+∠CMnO=∠M1OMn=m°, ∵M1O平分∠AM1M2, ∴∠AM1M2=2∠A M1O, 同理∠CMnMn-1=2∠CMnO, ∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°, 又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1), ∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)° 点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要. 14.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再 解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论; (2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论; (3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC. 试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE. ∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD; (2)∠BAE+∠MCD=90°.证明如下: 过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE. ∵∠E=90°,∴∠BAE+∠ECD=90°. ∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°; (3)①∠BAC=∠PQC+∠QPC.理由如下: 如图3:∵AB∥CD,∴∠BAC+∠ACD=180°. ∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC; ②∠PQC+∠QPC+∠BAC=180°.理由如下: 如图4:∵AB∥CD,∴∠BAC=∠ACQ. ∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°. 点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键. 15.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 南京 秦淮 外国语学校 年级 下册 数学 期末试卷 测试 word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文