中考数学专项突破之“圆.证明与计算”.doc
《中考数学专项突破之“圆.证明与计算”.doc》由会员分享,可在线阅读,更多相关《中考数学专项突破之“圆.证明与计算”.doc(15页珍藏版)》请在咨信网上搜索。
《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ⌒ ⌒ ∵AD是∠BAC的平分线, ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切. 分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解. 证明:取FG中点O,连结OC. ∵ABCD是正方形, ∴BC⊥CD,△CFG是Rt△ ∵O是FG的中点, ∴O是Rt△CFG的外心. ∵OC=OG, ∴∠3=∠G, ∵AD∥BC, ∴∠G=∠4. ∵AD=CD,DE=DE, ∠ADE=∠CDE=450, ∴△ADE≌△CDE(SAS) ∴∠4=∠1,∠1=∠3. ∵∠2+∠3=900, ∴∠1+∠2=900. 即CE⊥OC. ∴CE与△CFG的外接圆相切 方法二:若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题) 例1:如图,AB=AC,D为BC中点,⊙D与AB切于E点. 求证:AC与⊙D相切. 分析:说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关. 例2: 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900. 求证:CD是⊙O的切线. 证明一:连结OA,OB,作OE⊥CD,E为垂足. ∵AC,BD与⊙O相切, ∴AC⊥OA,BD⊥OB. ∵AC∥BD, ∴∠1+∠2+∠3+∠4=1800. O ∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900. ∵∠4+∠5=900. ∴∠1=∠5. ∴Rt△AOC∽Rt△BDO. ∴. ∵OA=OB, ∴. 又∵∠CAO=∠COD=900, ∴△AOC∽△ODC, ∴∠1=∠2. 又∵OA⊥AC,OE⊥CD, ∴OE=OA. ∴E点在⊙O上. ∴CD是⊙O的切线. 证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F. ∵AC,BD与⊙O相切, ∴AC⊥OA,BD⊥OB. ∵AC∥BD, ∴∠F=∠BDO. 又∵OA=OB, ∴△AOF≌△BOD(AAS) ∴OF=OD. ∵∠COD=900, ∴CF=CD,∠1=∠2. 又∵OA⊥AC,OE⊥CD, ∴OE=OA. ∴E点在⊙O上. ∴CD是⊙O的切线. 证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF. ∵AC与⊙O相切, ∴AC⊥AO. ∵AC∥BD, ∴AO⊥BD. ∵BD与⊙O相切于B, ∴AO的延长线必经过点B. ∴AB是⊙O的直径. ∵AC∥BD,OA=OB,CF=DF, ∴OF∥AC, ∴∠1=∠COF. ∵∠COD=900,CF=DF, ∴. ∴∠2=∠COF. ∴∠1=∠2. ∵OA⊥AC,OE⊥CD, ∴OE=OA. ∴E点在⊙O上. ∴CD是⊙O的切线 说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、B三点共线. 课后练习: (1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线; (2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O的切线. (3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线. (4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C,求证:CD是⊙O的切线. 知识点二:与圆有关的计算 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有: (1) 构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长); 射影定理: 所谓射影,就是正投影。 其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。 由三角形相似的性质:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下::(1)(AD)2;=BD·DC, (2)(AB)2;=BD·BC , (3)(AC)2;=CD·BC 。 等积式 (4)ABXAC=BCXAD(可用面积来证明) ③构造垂径定理模型:弦长一半、弦心距、半径; ④构造勾股定理模型(已知线段长度); ⑤构造三角函数(已知有角度的情况); 找不到,找相似 (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。 典型基本图型: 图形1:如图1:AB是⊙O的直径,点E、C是⊙O上的两点,基本结论有: (1)在“AC平分∠BAE”;“AD⊥CD”;“DC是⊙O的切线”三个论断中,知二推一。 (2)如图2、3,DE等于弓形BCE的高;DC=AE的弦心距OF(或弓形BCE的半弦EF)。 (3)如图(4):若CK⊥AB于K,则: ①CK=CD;BK=DE;CK=BE=DC;AE+AB=2BK=2AD; ②⊿ADC∽⊿ACBAC2=AD•AB (4)在(1)中的条件①、②、③中任选两个条件,当BG⊥CD 于E时(如图5),则: ①DE=GB;②DC=CG;③AD+BG=AB;④AD•BG==DC2 图形2:如图:Rt⊿ABC中,∠ACB=90°。点O是AC上一点,以OC为半径作⊙O交AC于点E,基本结论有: (1)在“BO平分∠CBA”;“BO∥DE”;“AB是⊙O的切线”;“BD=BC”。四个论断中,知一推三。 (2)①G是⊿BCD的内心;② ;③⊿BCO∽⊿CDEBO•DE=CO•CE=CE2; (3)在图(1)中的线段BC、CE、AE、AD中,知二求四。 (4)如图(3),若①BC=CE,则:②==tan∠ADE;③BC:AC:AB=3:4:5 ;(在①、②、③中知一推二)④设BE、CD交于点H,,则BH=2EH 图形3:如图:Rt⊿ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D,基本结论有: 如右图:(1)DE切⊙OE是BC的中点; (2)若DE切⊙O,则:①DE=BE=CE; ②D、O、B、E四点共圆∠CED=2∠A ③CD·CA=4BE2, 图形特殊化:在(1)的条件下 如图1:DE∥AB⊿ABC、⊿CDE是等腰直角三角形; 如图2:若DE的延长线交AB的延长线于点F,若AB=BF,则: ① ;② 图形4:如图,⊿ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点F, 基本结论有: (1)DE⊥ACDE切⊙O; (2)在DE⊥AC或DE切⊙O下,有:①⊿DFC是等腰三角形; ②EF=EC;③D是 的中点。④与基本图形1的结论重合。 ⑤连AD,产生母子三角形。 图形5::以直角梯形ABCD的直腰为直径的圆切斜腰于E, 基本结论有: (1)如图1:①AD+BC=CD; ②∠COD=∠AEB=90°; ③OD平分∠ADC(或OC平分∠BCD);(注:在①、②、③及④“CD是⊙O的切线”四个论断中,知一推三) ④AD·BC=2=R2; (2)如图2,连AE、CO,则有:CO∥AE,CO•AE=2R2(与基本图形2重合) (3)如图3,若EF⊥AB于F,交AC于G,则:EG=FG. 图形6:如图:直线PR⊥⊙O的半径OB于E,PQ切⊙O于Q,BQ交直线PQ于R。 基本结论有: (1)PQ=PR (⊿PQR是等腰三角形); (2)在“PR⊥OB”、“PQ切⊙O”、“PQ=PR”中,知二推一 (3)2PR·RE=BR·RQ=BE·2R=AB2 图形7:如图,⊿ABC内接于⊙O,I为△ABC的内心。基本结论有: (1)如图1,①BD=CD=ID;②DI2=DE·DA; ③∠AIB=90°+∠ACB; (2)如图2,若∠BAC=60°,则:BD+CE=BC. 图形8:已知,AB是⊙O的直径,C是 中点,CD⊥AB于D。BG交CD、AC 于E、F。基本结论有: (1)CD=BG;BE=EF=CE;GF=2DE (反之,由CD=BG或BE=EF可得:C是 中点) (2)OE=AF,OE∥AC;⊿ODE∽⊿AGF (3)BE·BG=BD·BA (4) 若D是OB的中点,则:①⊿CEF是等边三角形;② 范例讲解: 例题1:△ABP中,∠ABP=90°,以AB为直径作⊙O交AP于C点,弧=,过C作AF的垂线,垂足为M,MC的延长线交BP于D. (1)求证:CD为⊙O的切线; (2)连BF交AP于E,若BE=6,EF=2,求的值。 例题2:直角梯形ABCD中,∠BCD=90°,AB=AD+BC,AB为直径的圆交BC于E,连OC、BD交于F. ⑴求证:CD为⊙O的切线 ⑵若,求的值 例题3:如图,AB为直径,PB为切线,点C在⊙O上,AC∥OP。 (1)求证:PC为⊙O的切线。 (2)过D点作DE⊥AB,E为垂足,连AD交BC于G,CG=3,DE=4,求的值。 例题4(2009调考):如图,已知△ABC中,以边BC为直径的⊙O与边AB交于点D,点E为 的中点,AF为△ABC的角平分线,且AF⊥EC。 (1)求证:AC与⊙O相切; (2)若AC=6,BC=8,求EC的长 家庭练习: 1.如图,Rt△ABC,以AB为直径作⊙O交AC于点D, ,过D作AE的垂线,F为垂足. (1)求证:DF为⊙O的切线; (2)若DF=3,⊙O的半径为5,求的值. 2.如图,AB为⊙O的直径,C、D为⊙O上的两点, ,过D作直线BC的垂线交直线AB于点E,F为垂足. (1)求证:EF为⊙O的切线; (2)若AC=6,BD=5,求的值. 3.如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连结CE交AB于点F. (1)求证:DE=DF; (2)连结AE,若OF=1,BF=3,求的值. 4.如图,Rt△ABC中,∠C=90°,BD平分∠ABC,以AB上一点O为圆心过B、D两点作⊙O,⊙O交AB于点一点E,EF⊥AC于点F. (1)求证:⊙O与AC相切; (2)若EF=3,BC=4,求的值. 5.如图,等腰△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,DE⊥AC于E. (1)求证:DE为⊙O的切线; (2)若BC=,AE=1,求的值. 6.如图,BD为⊙O的直径,A为 的中点,AD交BC于点E,F为BC延长线上一点,且FD=FE. (1)求证:DF为⊙O的切线; (2)若AE=2,DE=4,△BDF的面积为,求的值. 7、如图,AB是⊙O的直径,M是线段OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E. (1)求证:CF是⊙O的切线; (2)设⊙O的半径为1,且AC=CE,求的长. 8、如图,AB是⊙O的直径,BC⊥AB,过点C作⊙O的切线CE,点D是CE延长线上一点,连结AD,且AD+BC=CD. (1)求证:AD是⊙O的切线; (2)设OE交AC于F,若OF=3,EF=2,求线段BC的长. 9、如图,△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,且CD=BD. (1)求证:BC是⊙O的切线; (2)已知点M、N分别是AD、CD的中点,BM延长线交⊙O于E,EF∥AC,分别交BD、BN的延长线于H、F,若DH=2,求EF的长. 10、如图,AB是半⊙O上的直径,E是的中点,OE交弦BC于点D,过点C作交AD的平行线交OE的延长线于点F. ∠ADO=∠B. (1)求证:CF为⊙O的⊙O切线; (2)求sin∠BAD 的值. 11、如图,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)求证:DF是⊙O的切线. (2)若AE=14,BC=12,求BF的长- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专项 突破 证明 计算
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文