中考数学培优-易错-难题(含解析)之平行四边形含答案.doc
《中考数学培优-易错-难题(含解析)之平行四边形含答案.doc》由会员分享,可在线阅读,更多相关《中考数学培优-易错-难题(含解析)之平行四边形含答案.doc(29页珍藏版)》请在咨信网上搜索。
1、中考数学培优 易错 难题(含解析)之平行四边形含答案一、平行四边形1已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动(1)如图1,当b=2a,点M运动到边AD的中点时,请证明BMC=90;(2)如图2,当b2a时,点M在运动的过程中,是否存在BMC=90,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b2a时,(2)中的结论是否仍然成立?请说明理由【答案】(1)见解析;(2)存在,理由见解析;(3)不成立理由如下见解析.【解析】试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得AMB=DMC
2、=45,则可求得BMC=90;(2)由BMC=90,易证得ABMDMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2bx+a2=0,由b2a,a0,b0,即可判定0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;(3)由(2),当b2a,a0,b0,判定方程x2bx+a2=0的根的情况,即可求得答案试题解析:(1)b=2a,点M是AD的中点,AB=AM=MD=DC=a,又在矩形ABCD中,A=D=90,AMB=DMC=45,BMC=90(2)存在,理由:若BMC=90,则AMB+DMC=90,又AMB+ABM=90,ABM=DMC,又A=D=90,ABMDMC,设A
3、M=x,则,整理得:x2bx+a2=0,b2a,a0,b0,=b24a20,方程有两个不相等的实数根,且两根均大于零,符合题意,当b2a时,存在BMC=90,(3)不成立理由:若BMC=90,由(2)可知x2bx+a2=0,b2a,a0,b0,=b24a20,方程没有实数根,当b2a时,不存在BMC=90,即(2)中的结论不成立考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质2如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B的位置,AB与CD交于点E.(1)求证:AEDCEB(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PGAE于G,PHBC于H.求PG
4、 + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形, ,又 , ;(2) , , , ,在中,过点作于, , , , , 、共线, ,四边形是矩形, , .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.3如果两个三角形的两条边对应相等,
5、夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形(1)用尺规将图1中的ABC分割成两个互补三角形;(2)证明图2中的ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、的三角形,并计算图3中六边形DEFGHI的面积若ABC的面积为2,求以EF、DI、HG的长为边的三角形面积【答案】(1)作图见解析(2)证明见解析(3)62;6【解析】试题分析:(1)作BC边上的中
6、线AD即可(2)根据互补三角形的定义证明即可(3)画出图形后,利用割补法求面积即可平移CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明SEFM=3SABC即可试题解析:(1)如图1中,作BC边上的中线AD,ABD和ADC是互补三角形(2)如图2中,延长FA到点H,使得AH=AF,连接EH四边形ABDE,四边形ACGF是正方形,AB=AE,AF=AC,BAE=CAF=90,EAF+BAC=180,AEF和ABC是两个互补三角形EAH+HAB=BAC+HAB=90,EAH=BAC,AF=AC,AH=AB,在AEH和ABC中,AEHABC,SAEF=SAEH=SABC(3)边长为、的三角
7、形如图4所示SABC=3421.53=5.5,S六边形=17+13+10+45.5=62如图3中,平移CHG到AMF,连接EM,IM,则AM=CH=BI,设ABC=x,AMCH,CHBC,AMBC,EAM=90+90x=180x,DBI=3609090x=180x,EAM=DBI,AE=BD,AEMDBI,在DBI和ABC中,DB=AB,BI=BC,DBI+ABC=180,DBI和ABC是互补三角形,SAEM=SAEF=SAFM=2,SEFM=3SABC=6考点:1、作图应用与设计,2、三角形面积4如图,在等腰中,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以AB,AD为
8、邻边作平行四边形ABFD,连接AF请直接写出线段AF,AE的数量关系;将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;若,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度 【答案】(1)证明见解析;(2)或.【解析】【分析】如图中,结论:,只要证明是等腰直角三角形即可;如图中,结论:,连接EF,DF交BC于K,先证明再证明是等腰直角三角形即可;分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可.【详解】如图中,结论:理由:四边形ABFD是平行
9、四边形,是等腰直角三角形,故答案为如图中,结论:理由:连接EF,DF交BC于K四边形ABFD是平行四边形,在和中,是等腰直角三角形,如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,如图中当时,四边形ABFD是菱形,易知,综上所述,满足条件的AE的长为或【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型5如图,四边形是知形,点是线段上一动点(不与重合),点是线段延长线上一动点,连接交于点.设,已知与之间的函数关系如图所示.(1)求图
10、中与的函数表达式;(2)求证:;(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,说明理由【答案】(1)y2x+4(0x2);(2)见解析;(3)存在,x或或【解析】【分析】(1)利用待定系数法可得y与x的函数表达式;(2)证明CDEADF,得ADFCDE,可得结论;(3)分三种情况:若DEDG,则DGEDEG,若DEEG,如图,作EHCD,交AD于H,若DGEG,则GDEGED,分别列方程计算可得结论【详解】(1)设ykx+b,由图象得:当x1时,y2,当x0时,y4,代入得:,得,y2x+4(0x2);(2)BEx,BC2CE2x,四边形ABCD是矩形,CDAF90,C
11、DEADF,ADFCDE,ADF+EDGCDE+EDG90,DEDF;(3)假设存在x的值,使得DEG是等腰三角形,若DEDG,则DGEDEG,四边形ABCD是矩形,ADBC,B90,DGEGEB,DEGBEG,在DEF和BEF中,DEFBEF(AAS),DEBEx,CE2x,在RtCDE中,由勾股定理得:1+(2x)2x2,x;若DEEG,如图,作EHCD,交AD于H,ADBC,EHCD,四边形CDHE是平行四边形,C90,四边形CDHE是矩形,EHCD1,DHCE2x,EHDG,HGDH2x,AG2x2,EHCD,DCAB,EHAF,EHGFAG,(舍),若DGEG,则GDEGED,ADB
12、C,GDEDEC,GEDDEC,CEDF90,CDEDFE,CDEADF,2x,x,综上,x或或【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键6(1)(问题发现)如图1,在RtABC中,ABAC2,BAC90,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为 (2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
13、(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长【答案】(1)BE=AF;(2)无变化;(3)AF的长为1或+1【解析】试题分析:(1)先利用等腰直角三角形的性质得出AD= ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出ACFBCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论试题解析:(1)在RtABC中,AB=AC=2,根据勾股定理得,BC=AB=2,
14、点D为BC的中点,AD=BC=,四边形CDEF是正方形,AF=EF=AD=,BE=AB=2,BE=AF,故答案为BE=AF;(2)无变化;如图2,在RtABC中,AB=AC=2,ABC=ACB=45,sinABC=,在正方形CDEF中,FEC=FED=45,在RtCEF中,sinFEC=,FCE=ACB=45,FCEACE=ACBACE,FCA=ECB,ACFBCE, =,BE=AF,线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=,在RtBCF中,CF=,BC=2,根据勾股定理得,BF=,BE=BFEF=,由(2)知,BE=AF,AF=1,当
15、点E在线段BF的延长线上时,如图3,在RtABC中,AB=AC=2,ABC=ACB=45,sinABC=,在正方形CDEF中,FEC=FED=45,在RtCEF中,sinFEC= , ,FCE=ACB=45,FCB+ACB=FCB+FCE,FCA=ECB,ACFBCE, =,BE=AF,由(1)知,CF=EF=CD=,在RtBCF中,CF=,BC=2,根据勾股定理得,BF=,BE=BF+EF=+,由(2)知,BE=AF,AF=+1即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为1或+17在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接D
16、F(1)说明BEF是等腰三角形;(2)求折痕EF的长【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DEF=BFE,求出BEF=BFE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,
17、所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90在RtABE中,AE2+AB2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为:【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键8如图,抛物线y=mx2+2mx+n经过A(3,0),C(0,)两点,与x轴交于另一点B(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CEx轴交抛物线于点E,写出
18、点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由【答案】(1)y=x2+x;(2)F点坐标为(1,1);(3)四边形CDEF是菱形证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CEx轴,可知C、E关于对称轴对称。根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四
19、边形CDEF为菱形【详解】(1)抛物线y=mx2+2mx+n经过A(3,0),C(0,)两点,解得,抛物线解析式为y=x2+x;(2)y=x2+x,抛物线对称轴为直线x=1,CEx轴,C、E关于对称轴对称,C(0,),E(2,),A、B关于对称轴对称,B(1,0),设直线AC、BE解析式分别为y=kx+b,y=kx+b,则由题意可得,解得,直线AC、BE解析式分别为y=x,y=x,联立两直线解析式可得,解得,F点坐标为(1,1);(3)四边形CDEF是菱形证明:y=x2+x=(x+1)22,D(1,2),F(1,1),DFx轴,且CEx轴,DFCE,C(0,),且F(1,1),D(1,2),D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 易错 难题 解析 平行四边形 答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。