初一数学下册期末几何压轴题试题(带答案)-(一)培优试题.doc
《初一数学下册期末几何压轴题试题(带答案)-(一)培优试题.doc》由会员分享,可在线阅读,更多相关《初一数学下册期末几何压轴题试题(带答案)-(一)培优试题.doc(46页珍藏版)》请在咨信网上搜索。
一、解答题 1.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比. 2.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 3.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 4.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 5.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 6.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 7.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:,反之,这个式子仍然成立,即:. (1)问题发现 观察下列等式: ①, ②, ③,…, 猜想并写出第个式子的结果: .(直接写出结果,不说明理由) (2)类比探究 将(1)中的的三个等式左右两边分别相加得: , 类比该问题的做法,请直接写出下列各式的结果: ① ; ② ; (3)拓展延伸 计算:. 8.观察下列各式,并用所得出的规律解决问题: (1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位. (2)已知,,则_____;______. (3),,,…… 小数点的变化规律是_______________________. (4)已知,,则______. 9.阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵,即,∴的整数部分为2,小数部分为。 请解答 (1)的整数部分是______,小数部分是_______。 (2)如果的小数部分为a,的整数部分为b,求的值。 (3)已知x是的整数部分,y是其小数部分,直接写出的值. 10.观察下面的变形规律: ;;;…. 解答下面的问题: (1)仿照上面的格式请写出= ; (2)若n为正整数,请你猜想= ; (3)基础应用:计算:. (4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:. 11.规律探究,观察下列等式: 第1个等式: 第2个等式: 第3个等式: 第4个等式: 请回答下列问题: (1)按以上规律写出第5个等式:= ___________ = ___________ (2)用含n的式子表示第n个等式:= ___________ = ___________(n为正整数) (3)求 12.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”. (1)分别判断数组和是否为“蹦蹦数组”; (2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请说明理由; (3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数. 13.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16. (1)求点C的坐标. (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴). (3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由. 14.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 15.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC; (2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由; (3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系 16.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表: 数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元) 零售价的95% 零售价的85% 零售价的75% (1)如果师傅要批发240千克苹果选择哪家批发更优惠? (2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少? 17.如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为At,Bt. (1)直接写出A1,B1,At,Bt的坐标(用含n、t的式子表示); (2)以下判断正确的是 . A.经过n次操作,点A,点B位置互换 B.经过(n﹣1)次操作,点A,点B位置互换 C.经过2n次操作,点A,点B位置互换 D.不管几次操作,点A,点B位置都不可能互换 (3)t为何值时,At,B两点位置距离最近? 18.在平面直角坐标系中,点A(1,2),点B(a,b),且,点E(6,0),将线段AB向下平移m个单位(m>0)得到线段CD,其中A、B的对应点分别为C、D. (1)求点的坐标及三角形ABE的面积; (2)当线段CD与轴有公共点时,求的取值范围; (3)设三角形CDE的面积为,当时,求的取值范围. 19.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少? 20.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题: (1)分别求出每款瓷砖的单价. (2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块? (3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案). 21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元. (1)求A,B两种奖品的单价; (2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由. 22.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.” (1)李老师为什么说他搞错了?试用方程的知识给予解释; (2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元? 23.如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足.将点B向右平移24个单位长度得到点C.点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F.设运动的时间为t秒(0<t<10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同). (1)求点A和点C的坐标; (2)若S四边形BOED≥S四边形ACDE,求t的取值范围; (3)求证:在D,E运动的过程中,S△OEF>S△DCF总成立. 24.如图,在平面直角坐标系中,已知,点,,,,,满足, (1)直接写出点,,的坐标及的面积; (2)如图2,过点作直线,已知是上的一点,且,求的取值范围; (3)如图3,是线段上一点, ①求,之间的关系; ②点为点关于轴的对称点,已知,求点的坐标. 25.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子. (1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个? (2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个? (3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个? 26.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元. (1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算? (2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算? (3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次? 27.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”. 将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为. 例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以. 根据以上定义,解答下列问题: (1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字) (2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c; (3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________; (4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________. 28.在平面直角坐标系中,点,,,且,,满足. (1)请用含的式子分别表示,两点的坐标; (2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围; (3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围. 29.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”. (1)在点,,中,原点的“距点”是_____(填字母); (2)已知点,点,过点作平行于轴的直线. ①当时,直线上点的“距点”的坐标为_____; ②若直线上存在点的“点”,求的取值范围. (3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围. 30.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6. (1)求点A、B的坐标; (2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S; (3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)55°或35°;(2)①;②. 【解析】 【分析】 (1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO; (2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系; ②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比. 【详解】 (1)分两种情况: ①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示: 由已知得,,∠CFE=90° ∴∠FEC=90°-10°=80°, 又∵点在第二象限的角平分线上, ∴∠POE=45° 又∵∠FEC=∠PEO=80° ∴∠CPO=180°-80°-45°=55° ②延长CB,交直线l于点E, 由已知得,, ∵点在第二象限的角平分线上, ∴∠CEO=45° ∴∠CEO=∠CPE+∠PCB ∴∠CPO=45°-10°=35°. 故答案为55°或35°. (2)如图, ①设长方形向上平移个单位长,得到长方形 ∴ ②∵长方形, ∴ ∵, 令交于E, 则四边形是平行四边形, ∴ ∴ 又∵ 由①得知, ∴ ∴. 【点睛】 此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题. 2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 3.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 4.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 7.(1) ;(2)①;②;(3) . 【分析】 (1)根据题目中的式子可以写出第n个式子的结果; (2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; ②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; (3)根据题目中式子的特点,可以求得所求式子的值. 【详解】 解:(1)由题目中的式子可得, , 故答案为:; (2)① , 故答案为:; ② , 故答案为:; (3) . 【点睛】 本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值. 8.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【分析】 (1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【详解】 解:(1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一; (2)已知,,则;; 故答案为:12.25;0.3873; (3),,,…… 小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4)∵,, ∴, ∴, ∴y=-0.01. 【点睛】 此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键. 9.(1)3;﹣3; (2)4;(3)x﹣y=7﹣. 【分析】 (1)由3<<4可得答案; (2)由2<<3知a=﹣2,由6<<7知b=6,据此求解可得; (3)由2<<3知5<3+<6,据此得出x、y的值代入计算可得. 【详解】 (1)∵3<<4, ∴的整数部分是3,小数部分是﹣3; 故答案为3;﹣3. (2)∵2<<3, ∴a=﹣2, ∵6<<7, ∴b=6, ∴a+b﹣=﹣2+6﹣=4. (3)∵2<<3, ∴5<3+<6, ∴3+的整数部分为x=5,小数部分为y=3+﹣5=﹣2. 则x﹣y=5﹣(﹣2)=5﹣+2=7﹣. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小. 10.(1) ;(2) ;(3);(4)x=2017;(5) 【分析】 (1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可. 【详解】 (1) 故答案为:; (2)= 故答案为:; (3)计算: = =1﹣ =; (4) =2016 =2016, x=2017; (5). =+()+()+…+(). =(1﹣). =. 【点睛】 本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题. 11.(1);;(2);;(3). 【分析】 (1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可; (3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可. 【详解】 (1)观察前4个等式的分母可知,第5个式子的分母为 则第5个式子为: 故应填:;; (2)第1个等式的分母为: 第2个等式的分母为: 第3个等式的分母为: 第4个等式的分母为: 归纳类推得,第n个等式的分母为: 则第n个等式为:(n为正整数) 故应填:;; (3)由(2)的结论得: 则 . 【点睛】 本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键. 12.(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147. 【分析】 (1)由“蹦蹦数组”的定义进行验证即可; (2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解; (3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数. 【详解】 解:(1)数组(437,307,177)中,437-307=130,307-177=130, ∴437-307=307-177,故(437,307,177)是“蹦蹦数组”; 数组(601,473,346)中,601-473=128,473-346=127, ∴601-473473-346,故(601,473,346)不是“蹦蹦数组”; (2)设s为,t为,则, ∵m、n为整数, ∴,则t为258, ∴s为532, 而,则b为532-137=395, 验算:532-395=395-258=137, 故数组为(532,395,258); (3)根据题意,设这个数为,则, ∴, 而和都是0到9的正整数, 讨论: p 1 2 3 4 5 q 1 3 5 7 9 111 123 135 147 159 而是7的倍数的三位数只有147, 且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”, 故这个三位数是147. 【点睛】 本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解. 13.(1) C(5,﹣4);(2)90°;(3)见解析. 【详解】 分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可; (2)用同角的余角相等和角平分线的意义即可; (3)利用角平分线的意义和互余两角的关系简单计算证明即可. 详解:(1)∵(a﹣3)2+|b+4|=0, ∴a﹣3=0,b+4=0, ∴a=3,b=﹣4, ∴A(3,0),B(0,﹣4), ∴OA=3,OB=4, ∵S四边形AOBC=16. ∴0.5(OA+BC)×OB=16, ∴0.5(3+BC)×4=16, ∴BC=5, ∵C是第四象限一点,CB⊥y轴, ∴C(5,﹣4); (2)如图, 延长CA,∵AF是∠CAE的角平分线, ∴∠CAF=0.5∠CAE, ∵∠CAE=∠OAG, ∴∠CAF=0.5∠OAG, ∵AD⊥AC, ∴∠DAO+∠OAG=∠PAD+∠PAG=90°, ∵∠AOD=90°, ∴∠DAO+∠ADO=90°, ∴∠ADO=∠OAG, ∴∠CAF=0.5∠ADO, ∵DP是∠ODA的角平分线, ∴∠ADO=2∠ADP, ∴∠CAF=∠ADP, ∵∠CAF=∠PAG, ∴∠PAG=∠ADP, ∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90° 即:∠APD=90° (3)不变,∠ANM=45°理由:如图, ∵∠AOD=90°, ∴∠ADO+∠DAO=90°, ∵DM⊥AD, ∴∠ADO+∠BDM=90°, ∴∠DAO=∠BDM, ∵NA是∠OAD的平分线, ∴∠DAN=0.5∠DAO=0.5∠BDM, ∵CB⊥y轴, ∴∠BDM+∠BMD=90°, ∴∠DAN=0.5(90°﹣∠BMD), ∵MN是∠BMD的角平分线, ∴∠DMN=0.5∠BMD, ∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45° 在△DAM中,∠ADM=90°, ∴∠DAM+∠DMA=90°, 在△AMN中, ∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°, ∴D点在运动过程中,∠N的大小不变,求出其值为45° 点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点. 14.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 下册 期末 几何 压轴 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文