无锡市大桥中学七年级数学压轴题专题.doc
《无锡市大桥中学七年级数学压轴题专题.doc》由会员分享,可在线阅读,更多相关《无锡市大桥中学七年级数学压轴题专题.doc(34页珍藏版)》请在咨信网上搜索。
无锡市大桥中学七年级数学压轴题专题 一、七年级上册数学压轴题 1.如图,点、在数轴上分别表示实数、,、两点之间的距离表示为,在数轴上、两点之间的距离请你利用数轴回答下列问题: (1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________. (2)数轴上表示和1两点之间的距离为_______,数轴上表示和两点之间的距离为________. (3)若表示一个实数,且,化简________. (4)的最小值为________. (5)的最大值为________. 2.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|. (1)求a、b、c、d的值; (2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度; (3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值; (4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数. 3.已知:b是最小的正整数,且、b、c满足,请回答问题. (1)请直接写出、b、c的值. (2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为,点P在0到2之间运动时(即0≤x≤2时),请化简式子: (请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BCAB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值. 4.如图,图中数轴的单位长度为1,请回答下列问题: (1)如果点A,B表示的数是互为相反数,那么点C表示的数是_______,在此基础上,在数轴上与点C的距离是3个单位长度的点表示的数是__________ (2)如果点D,B表示的数是互为相反数,那么点E表示的数是_______ (3)在第(1)问的基础上解答:若点P从点A出发,以每秒1个单位长度的速度向点B的方向匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度向点A的方向匀速运动.则两个点相遇时点P所表示的数是多少? 5.已知:a是最大的负整数,且a、b满足|c-7|+(2a+b)2=0,请回答问题: (1)请直接写出a、b、c的值:a =_____,b =_____,c =_____; (2)数a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值; (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由,若不变,请求其值. 6.如图,已知点A距离数轴原点2个单位长度,且位于原点左侧,将点A先向右平移10个单位长度,再向左平移4个单位长度,得到点B,点P是数轴上的一个动点. (1)在数轴上标出A、B的位置,并求出A、B之间的距离; (2)当点P在数轴上移动,满足时,求P点表示的数; (3)动点P从数轴上某一点出发,第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…… ①若在原点处,按以上规律移动,则点P第n次移动后表示的数为__________; ②若按以上规律移动了次时,点P在数轴上所表示的数恰是,则动点P的初始位置K点所表示的数是___________. 7.已知数轴上三点,,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为. (1)如果点到点、点的距离相等,那么的值是______. (2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由. (3)如果点以每分钟1个单位长度的速度从点向右运动,同时另一点从点以每分钟2个单位长度的速度向左运动.设分钟时点和点到点的距离相等,则的值为______.(直接写出答案) 8.已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示. (1)在数轴上标出A、B的位置,并直接写出A、B之间的距离; (2)写出的最小值; (3)已知点C在点B的右侧且BC=9,当数轴上有点P满足PB=2PC时, ①求P点对应的数的值; ②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。 9.已知,一个点从数轴上的原点开始.先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点. (1)点C表示的数是 ; (2)若点A以每秒2cm的速度向左移动,同时C、B两点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒, ①运动t秒时,点C表示的数是 (用含有t的代数式表示); ②当t=2秒时,CB•AC的值为 . ③试探索:点A、B、C在运动的过程中,线段CB与AC总有怎样的数量关系?并说明理由. 10.如图,在数轴上,点O是原点,点A,B是数轴上的点,已知点A对应的数是a,点B对应的数是b,且a,b满足. (1)在数轴上标出点A,B的位置. (2)在数轴上有一个点C,满足,则点C对应的数为________. (3)动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t秒(). ①当为何值时,原点O恰好为线段PQ的中点. ②若M为AP的中点,点N在线段BQ上,且,若时,请直接写出t的值. 11.以直线AB上一点O为端点作射线OC,使∠BOC=40°,将一个直角三角板的直角顶点放在O处,即∠DOE=90°. (1)如图1,若直角三角板DOE的一边OE放在射线OA上,则∠COD= ; (2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,则∠COD= ; (3)将直角三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好有∠COD=∠AOE,求此时∠BOD的度数. 12.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒. (1)当t=2时,求∠POQ的度数; (2)当∠POQ=40°时,求t的值; (3)在旋转过程中,是否存在t的值,使得∠POQ=∠AOQ?若存在,求出t的值;若不存在,请说明理由. 13.如图,O为直线AB上的一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周. (1)几秒后ON与OC重合? (2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值. (3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画出图并说明理由. 14.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转 (1)试说明∠DPC=90°; (2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF; (3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间. 15.已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧. (1)若AB=15,DE=6,线段DE在线段AB上移动. ①如图1,当E为BC中点时,求AD的长; ②点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长; (2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,求的值. 16.已知,OD为∠AOB内部的一条射线. (1)如图(1),若,OD为∠AOB内部的一条射线,,OE平分∠AOB,求∠DOE的度数; (2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且,求的值; (3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t35),OE平分∠AOB1,OF为∠C1OB1的三等分线,,若,直接写出t的值为_________. 17.(阅读理解) 射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则我们称射线OC是射线OA关于∠AOB的伴随线.例如,如图1,若∠AOC=∠BOC,则称射线OC是射线OA关于∠AOB的伴随线;若∠BOD =∠COD,则称射线OD是射线OB关于∠BOC的伴随线. (知识运用)如图2,∠AOB=120°. (1)射线OM是射线OA关于∠AOB的伴随线.则∠AOM=_________° (2)射线ON是射线OB关于∠AOB的伴随线,射线OQ是∠AOB的平分线,则∠NOQ的度数是_________°. (3)射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止. ①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由. ②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线. 18.(1)探究:哪些特殊的角可以用一副三角板画出? 在①,②,③,④中,小明同学利用一副三角板画不出来的特殊角是 ;(填序号) (2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线,然后将一副三角板拼接在一起,其中角()的顶点与角()的顶点互相重合,且边、都在直线上.固定三角板不动,将三角板绕点按顺时针方向旋转一个角度,当边与射线第一次重合时停止. ①当平分时,求旋转角度; ②是否存在?若存在,求旋转角度;若不存在,请说明理由. 19.如图①,O是直线上的一点,是直角,平分. (1)若,则____________°,____________°; (2)将图①中的绕顶点O顺时针旋转至图②的位置,其他条件不变,若,求的度数(用含的式子表示); (3)将图①中的绕顶点O顺时针旋转至图③的位置,其他条件不变,直接写出和的度数之间的关系:__________________.(不用证明) 20.如图,在数轴上点表示数,点表示数,,满足. (1)求,的值; (2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数; (3)如图,一小球甲从点处以2个单位/秒的速度向左运动;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒). ①分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示); ②求甲、乙两小球相距两个单位时所经历的时间. 【参考答案】***试卷处理标记,请不要删除 一、七年级上册数学压轴题 1.(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4 【分析】 (1)(2)直接代入公式即可; (3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和; (4) 解析:(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4 【分析】 (1)(2)直接代入公式即可; (3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和; (4)可知x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小; (5)分当-1<x<3时,当x≤-1时,当x≥3时,三种情况分别化简,从而求出最大值. 【详解】 解:(1)|6-2|=4,|-2-1|=3, 答案为:4,3; (2)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为|x-1|, 数轴上表示x和-3两点之间的距离为|x+3|, 故答案为:|x-1|,|x+3|; (3)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8, 故答案为:8; (4)|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示数x到1,2,3,4,5的距离之和, 可知:当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6, 故答案为:6; (5)当-1<x<3时,|x+1|-|x-3|=x+1+x-3=2x-2, -4<2x-2<4, 当x≤-1时,|x+1|-|x-3|=-x-1+x-3=-4, 当x≥3时,|x+1|-|x-3|=x+1-x+3=4, 综上:的最大值为4. 【点睛】 此题主要考查了绝对值、数轴等知识,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点. 2.(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2. 【分析】 (1)根据 解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2. 【分析】 (1)根据平方和绝对值的非负性即可求出结论; (2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论; (3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论; (4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论. 【详解】 (1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|, (a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0, ∴a=﹣16,b=8,c=10,d=﹣12; (2)设点A的运动速度为每秒v个单位长度, 4v+4×2=8+16, v=4, 答:点A的运动速度为每秒4个单位长度; (3)如图1, t秒时,点A表示的数为:﹣16+4t, 点B表示的数为:8+2t, 点C表示的数为:10+t. ∵2AB=CD, ①2[(﹣16+4t)﹣(8+2t)]=10+t+12, 2(﹣24+2t)=22+t, ﹣48+4t=22+t, 3t=70, t; ②2[(8+2t)﹣(﹣16+4t)]=10+t+12, 2(24﹣2t)=22+t, 5t=26, t, 综上,t的值是秒或秒; (4)B点运动至A点所需的时间为12(s),故t≤12, ①由(2)得: 当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0; ②当点A从点C返回出发点时,若与B相遇, 由题意得:6.5(s),3.25(s), ∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s), 则2×4×(t﹣6.5)=10﹣8+2t, t=9<9.75, 此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10; ③当点A第二次从出发点返回点C时,若与点B相遇,则 8(t﹣9.75)+2t=16+8, 解得:t=10.2; 综上所述:A,B两点同时到达的点在数轴上表示的数为:0或9或10.2. 【点睛】 此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键. 3.(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析 【分析】 (1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b 解析:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析 【分析】 (1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值; (2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2. 【详解】 解:(1)∵b是最小的正整数,∴b=1. 根据题意得:c-5=0且a+b=0, ∴a=-1,b=1,c=5. 故答案是:-1;1;5; (2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0, 则:|x+1|-|x-1|+2|x+5| =x+1-(1-x)+2(x+5) =x+1-1+x+2x+10 =4x+10; 当1<x≤2时,x+1>0,x-1>0,x+5>0. ∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5) =x+1-x+1+2x+10 =2x+12; (3)不变.理由如下: t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5. ∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2, 即BC-AB值的不随着时间t的变化而改变. 【点睛】 本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 4.(1)-1;-4或2;(2);(3)-1 【分析】 (1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点 解析:(1)-1;-4或2;(2);(3)-1 【分析】 (1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点的距离是3个单位长度的点表示的数; (2)由的长度结合点,表示的数是互为相反数,即可得出点表示的数,由且点在点的右边可得出点表示的数; (3)当运动时间为秒时,点表示的数为,点表示的数为,由点,相遇可得出关于的一元一次方程,解之即可得出的值,再将其代入中即可得出两个点相遇时点所表示的数. 【详解】 解:(1),且点,表示的数是互为相反数, 点表示的数为,点表示的数为3, 点表示的数为. ,, 在数轴上与点的距离是3个单位长度的点表示的数是或2. 故答案为:;或2. (2),且点,表示的数是互为相反数, 点表示的数为, 点表示的数为. 故答案为:. (3)当运动时间为秒时,点表示的数为,点表示的数为, , , . 答:两个点相遇时点所表示的数是. 【点睛】 本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(2)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(3)找准等量关系,正确列出一元一次方程. 5.(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2 【分析】 (1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即 解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2 【分析】 (1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得b,c的值; (2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值; (3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解. 【详解】 解:(1)∵a是最大的负整数, ∴a=-1, ∵|c-7|+(2a+b)2=0, ∴c-7=0,2a+b=0, ∴b=2,c=7. 故答案为:-1,2,7; (2)BC-AB =(7-2)-(2+1) =5-3 =2. 故此时BC-AB的值是2; (3)BC-AB的值不随着时间t的变化而改变,其值为2.理由如下: t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7. ∴BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2)-(-1-t)=3t+3, ∴BC-AB=(3t+5)-(3t+3)=2, ∴BC-AB的值不随着时间t的变化而改变,其值为2. 【点睛】 此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键. 6.(1)数轴见解析,A、B之间的距离为6;(2)2或10;(3)①(-1)n•n;②4 【分析】 (1)根据数轴的定义得到点A和点B表示的数,从而得到A、B之间的距离; (2)设点P表示的数为x,表示 解析:(1)数轴见解析,A、B之间的距离为6;(2)2或10;(3)①(-1)n•n;②4 【分析】 (1)根据数轴的定义得到点A和点B表示的数,从而得到A、B之间的距离; (2)设点P表示的数为x,表示出PA和PB,令PA=2PB,得到方程,解之即可; (3)①根据点P前几次表示的数找出规律即可得出结论; ②设动点P的初始位置K点所表示的数是m,根据①中所得规律,列出方程即可求出m值. 【详解】 解:(1)∵点A距离数轴原点2个单位长度,且位于原点左侧, ∴点A表示的数为-2, 将点A先向右平移10个单位长度,再向左平移4个单位长度,得到点B, ∴点B表示的数为:-2+10-4=4, 数轴如下: A、B之间的距离为:4-(-2)=6; (2)设点P表示的数为x, ∴PA=,PB=, ∵PA=2PB, ∴, 若点P在点A左侧, , 解得:x=10,不符合; 若点P在A、B之间, , 解得:x=2; 若点P在点B右侧, , 解得:x=10, 综上:点P表示的数为2或10; (3)①∵在原点处, 第一次移动后点P表示的数为0-1=-1, 第二次移动后点P表示的数为0-1+3=2, 第三次移动后点P表示的数为0-1+3-5=-3, 第四次移动后点P表示的数为0-1+3-5+7=4, ... ∴第n次移动后点P表示的数为:(-1)n•n; ②设动点P的初始位置K点所表示的数是m, 由①可得: 第n次移动后点P表示的数为:m+(-1)n•n, ∵移动了2n+1次时,点P在数轴上所表示的数恰是3-2n, ∴m+(-1)2n+1•(2n+1)=3-2n, 即m-(2n+1)=3-2n, 解得:m=4, 即点P的初始位置K点所表示的数是4. 【点睛】 本题考查了数轴,两点之间的距离,数字型规律,一元一次方程,解题的关键是注意分类讨论和数形结合思想的运用,同时要善于总结规律. 7.(1)1 (2)存在,或 (3)或 【分析】 (1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可; (3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况 解析:(1)1 (2)存在,或 (3)或 【分析】 (1)根据两点间的距离列方程求解即可; (2)分两种情况求解即可; (3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解. 【详解】 解:(1)由题意得 3-x=x-(-1), 解得 x=1; (2)存在, ∵MN=3-(-1)=4, ∴点P不可能在M、N之间. 当点P在点M的左侧时, (-1-x)+(3-x)=8, 解得 x=-3; 当点P在点N的右侧时, x-(-1)+(x-3)=8, 解得 x=5; ∴或; (3)当点P和点Q相遇时, t+2t=3, 解得 t=1; 当点Q运动到点M的左侧时, t+1=2t-4, 解得 t=5; ∴或. 【点睛】 此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键. 8.(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上 解析:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次 【分析】 (1)求出a、b的值,在数轴表示即可,求出AB的距离; (2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离; (3)①求出c的值,设出点P对应的数,用距离列方程求解即可; ②点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论. 【详解】 解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10; ∴AB=20-(-10)=30; (2)|x-a|+|x-b|=|x-20|+|x+10|, 当x位于点A与点B之间时,即,-10≤x≤20时,|x-20|+|x+10|的值最小,最小值为AB=30, 答:|x-20|+|x+10|的最小值为30; (3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为-1, 设点P表示的数为x, |x+10|=2|x+1|,解得x=8或x=-4; ②点Q每次移动对应在数轴上的数, 第1次:-1,第3次:-3,第5次:-5,…… 第2次:2,第4次:4,第6次:6,…… 因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合, 答:点Q能移动到与①中的点P重合的位置,移动的次数为8次. 【点睛】 本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键. 9.(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析. 【分析】 (1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数; 解析:(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析. 【分析】 (1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数; (2)依据点C表示的数为﹣1,点以每秒1cm的速度向右移动,即可得到运动t秒时,点C表示的数是﹣1+t; ②依据点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,即可得到CB•AC的值; ③依据点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,即可得到点A、B、C在运动的过程中,线段CB与AC相等. 【详解】 解:(1)∵一个点从数轴上的原点开始,先向左移动6cm到达A点,再从A点向右移动10cm到达B点, ∴点A表示﹣6,点B表示﹣6+10=4, 又∵点C是线段AB的中点, ∴点C表示的数为=﹣1, 故答案为:﹣1. (2)①∵点C表示的数为﹣1,点以每秒1cm的速度向右移动, ∴运动t秒时,点C表示的数是﹣1+t, 故答案为:﹣1+t; ②由题可得,当t=2秒时,点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1, ∴当t=2秒时,AC=11,BC=11, ∴CB•AC=121, 故答案为:121; ③点A、B、C在运动的过程中,线段CB与AC相等.理由: 由题可得,点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t, ∴BC=(4+4t)﹣(﹣1+t)=5+3t,AC=(﹣1+t)﹣(﹣6﹣2t)=5+3t, ∴点A、B、C在运动的过程中,线段CB与AC相等. 【点睛】 本题考查数轴上动点问题,整式的加减,与线段有关的动点问题.(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值. 10.(1)见解析;(2);(3)①时,点O恰好为线段PQ的中点;②当MN=3时 ,的值为或秒. 【分析】 (1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可; (2)设点C对应的数为x,分两 解析:(1)见解析;(2);(3)①时,点O恰好为线段PQ的中点;②当MN=3时 ,的值为或秒. 【分析】 (1)由绝对值和偶次方的非负性质得出,,得出,,画出图形即可; (2)设点C对应的数为x,分两种情况,画出示意图,由题意列出方程,解方程即可; (3)①分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可; ②根据题意得到点Q、点N对应的数,列出绝对值方程即可求解. 【详解】 (1)∵, ∴,, ∴,, 点A,B的位置如图所示: (2)设点C对应的数为, 由题意得:C应在A点的右侧, ∴CA==, ①当点C在线段AB上时,如图所示: 则CB=, ∵CA-CB=, ∴, 解得:; ②当点C在线段AB延长线上时,如图所示: 则CB=, ∵CA-CB=, ∴,方程无解; 综上,点C对应的数为; 故答案为:; (3)①由题意得:,,分两种情况讨论: 相遇前,如图: ,, ∵点O恰好为线段PQ的中点, ∴, 解得:; 相遇后,如图: ,, ∵点O恰好为线段PQ的中点, ∴, 解得:,此时,,不合题意; 故时,点O恰好为线段PQ的中点; ②当运动时间为t秒时,点P对应的数为(),点Q对应的数为(), ∵M为AP的中点,点N在线段BQ上,且, ∴点M对应的数为, 点N对应的数为, ∵, ∴, ∴, ∴或, 答:当的值为或秒时,. 【点睛】 本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏. 11.(1)50°;(2)20°;(3)15°或52.5°. 【分析】 (1)利用余角的定义可求解; (2)由平角的定义及角平分线的定义求解的度数,进而可求解; (3)可分两种情况:①当在的内部时,②当在 解析:(1)50°;(2)20°;(3)15°或52.5°. 【分析】 (1)利用余角的定义可求解; (2)由平角的定义及角平分线的定义求解的度数,进而可求解; (3)可分两种情况:①当在的内部时,②当在的外部时,根据角的和差可求解. 【详解】 解:(1)由题意得, , , 故答案为; (2),, , 平分, , , , 故答案为; (3)①当在的内部时, ,而, , ,, , 又, , ; ②当在的外部时, ,而, , ,, , 又, , , 综上所述:的度数为或. 【点睛】 本题主要考查余角的定义,角的和差,角平分线的定义等知识的综合运用,分类讨论是解题的关键. 12.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ. 【分析】 当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t= 解析:(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ. 【分析】 当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30; (1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可; (2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可; (3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可. 【详解】 解:当OQ,OP第一次相遇时,2t+6t=120,t=15; 当OQ刚到达OA时,6t=120,t=20; 当OQ,OP第二次相遇时,2t6t=120+2t,t=30; (1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°, ∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°. (2)当0≤t≤15时,2t +40+6t=120, t=10; 当15<t≤20时,2t +6t=120+40, t=20; 当20<t≤30时,2t =6t-120+40, t=20(舍去); 答:当∠POQ=40°时,t的值为10或20. (3)当0≤t≤15时,120-8t=(120-6t),120-8t=60-3t,t=12; 当15<t≤20时,2t –(120-6t)=(120 -6t),t=. 当20<t≤30时,2t –(6t -120)=(6t -120),t=. 答:存在t=12或或,使得∠POQ=∠AOQ. 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程. 13.(1)10秒;(2)5秒;(3)秒. 【分析】 (1)用角的度数除以转动速度即可得; (2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t; 解析:(1)10秒;(2)5秒;(3)秒. 【分析】 (1)用角的度数除以转动速度即可得; (2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t; (3)分别根据转动- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无锡市 大桥 中学 七年 级数 压轴 专题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文