运用点差法巧解圆锥曲线的中点弦问题.pptx
《运用点差法巧解圆锥曲线的中点弦问题.pptx》由会员分享,可在线阅读,更多相关《运用点差法巧解圆锥曲线的中点弦问题.pptx(15页珍藏版)》请在咨信网上搜索。
运用点差法巧解圆锥曲线的运用点差法巧解圆锥曲线的中点弦问题中点弦问题高中数学教师欧阳文丰制作 导导 言言 圆锥曲线综合题是每年高考必考的题目,这些题目的解法灵圆锥曲线综合题是每年高考必考的题目,这些题目的解法灵活多变,其中涉及圆锥曲线中点弦的有关问题,我们称之为圆锥活多变,其中涉及圆锥曲线中点弦的有关问题,我们称之为圆锥曲线的中点弦问题。用点差法求解此类问题,具有构思精巧,简曲线的中点弦问题。用点差法求解此类问题,具有构思精巧,简便易行的优点。便易行的优点。若设直线与圆锥曲线的交点(弦的端点)坐标为若设直线与圆锥曲线的交点(弦的端点)坐标为、,将这两点代入圆锥曲线的方程并对所得两式作差,得到将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦一个与弦的中点和斜率有关的式子,可以大大减少运算量。的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为我们称这种代点作差的方法为“点差法点差法”。过椭圆过椭圆 内一点内一点 引一引一条弦,使弦被点条弦,使弦被点 平分,求这条弦所在平分,求这条弦所在直线的方程直线的方程A(x2,y2)Mx xyo(x1,y1)B一一.问题引入问题引入例例1:已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在引一弦,使弦在这点被平分,求此弦所在直线的方程这点被平分,求此弦所在直线的方程.解法一:解法一:韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点坐标公式来构造二、例题讲解二、例题讲解例例1:已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.点差法:点差法:利用端点在曲线上,坐标满足方程,作差构利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率造出中点坐标和斜率点点作差作差二、例题讲解二、例题讲解小结:小结:弦中点、弦斜率问题弦中点、弦斜率问题的两种处理方法的两种处理方法 1.联立方程组,消去一个未知数,利用韦达定理解决联立方程组,消去一个未知数,利用韦达定理解决.2.点差法点差法:设弦的两端点坐标设弦的两端点坐标,代入曲线方程相减后分解代入曲线方程相减后分解 因式因式,便可与弦所在直线的斜率及弦的中点联系起来便可与弦所在直线的斜率及弦的中点联系起来.xyo.NM点差法例2二、例题讲解二、例题讲解xyo.NM二、例题讲解二、例题讲解例3、已知椭圆,求它的斜率为3的弦中点的轨迹方程。解:设弦端点、,弦的中点,则,又 ,两式相减得即,即 ,即由,得弦中点的轨迹方程为:二、例题讲解二、例题讲解例4 已知椭圆的一条准线方程是,有一条倾斜角为的直线交椭圆于A、B两点,若AB的中点为,则求椭圆的方程。二、例题讲解二、例题讲解解设,则,且,(1),(2)得:,(3),(4),(5)由(3),(4),(5)可得,所求椭圆方程为.二、例题讲解二、例题讲解注:凡关于中点弦和弦中点的问题,可采用点差法求解。三、变式练习三、变式练习三、变式练习三、变式练习2.弦中点问题弦中点问题的两种处理方法的两种处理方法 课堂小结课堂小结(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率和弦的中点坐标(点差法点差法)。1、利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。作业:qq已知椭圆已知椭圆x x2 2+2y+2y2 2=2,=2,(1)(1)求被点求被点P P(,)平分的弦所在直线方程;)平分的弦所在直线方程;(2)(2)求斜率为求斜率为2 2的平行弦的中点轨迹。的平行弦的中点轨迹。(3)(3)过过A(2,1)A(2,1)引椭圆的割线,求截得弦的中点轨引椭圆的割线,求截得弦的中点轨迹迹。1 12 21 12 2qq抛物线抛物线y=xy=x2 2-2x+2-2x+2与直线与直线y=mxy=mx交于交于P P1 1、P P2 2两两点点(1)(1)求线段求线段P P1 1P P2 2中点中点QQ的轨迹方程;的轨迹方程;(2)0 x2(2)0 x2求线段求线段P P1 1P P2 2中点中点QQ的最高点和最低点的最高点和最低点坐标。坐标。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运用 点差法巧解 圆锥曲线 中点 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文