数学建模经典案例4.ppt
《数学建模经典案例4.ppt》由会员分享,可在线阅读,更多相关《数学建模经典案例4.ppt(64页珍藏版)》请在咨信网上搜索。
1、第十章第十章 统计回归模型统计回归模型10.1 牙膏的销售量牙膏的销售量10.2 软件开发人员的薪金软件开发人员的薪金10.3 酶促反应酶促反应10.4 投资额与国民生产总值和物价指数投资额与国民生产总值和物价指数10.5 教学评估教学评估10.6 冠心病与年龄冠心病与年龄回归模型回归模型是用统计分析方法建立的最常用的一类模型是用统计分析方法建立的最常用的一类模型.数学建模的基本方法数学建模的基本方法机理分析机理分析测试分析测试分析通过对数据的通过对数据的统计分析统计分析,找出与数据拟合最好的模型,找出与数据拟合最好的模型.不涉及回归分析的数学原理和方法不涉及回归分析的数学原理和方法.通过通过
2、实例实例讨论如何选择不同类型的模型讨论如何选择不同类型的模型.对软件得到的结果进行对软件得到的结果进行分析分析,对模型进行,对模型进行改进改进.由于客观事物内部规律的复杂及人们认识程度的限制由于客观事物内部规律的复杂及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型律的数学模型.10.1 牙膏的销售量牙膏的销售量 问问题题建立建立牙膏销售量与价格、广告投入之间的牙膏销售量与价格、广告投入之间的模型模型;预测预测在不同价格和广告费用下的牙膏在不同价格和广告费用下的牙膏销售量销售量.收集了收集了30个销售周期本公司牙膏销售
3、量、价格、个销售周期本公司牙膏销售量、价格、广告费用,及同期其他厂家同类牙膏的平均售价广告费用,及同期其他厂家同类牙膏的平均售价.9.260.556.804.253.70307.930.055.803.853.80298.510.256.754.003.7527.38-0.055.503.803.851销售量销售量(百万支百万支)价格差价格差(元)(元)广告费用广告费用(百万元百万元)其他厂家其他厂家价格价格(元元)本公司价本公司价格格(元元)销售销售周期周期基本模型基本模型y 公司牙膏销售量公司牙膏销售量x1其他厂家与本公司其他厂家与本公司价格差价格差x2公司广告费用公司广告费用x2yx1y
4、x1,x2解释变量解释变量(回归变量回归变量,自变自变量量)y被解释变量(因变量)被解释变量(因变量)0,1,2,3 回归系数回归系数 随机随机误差(误差(均值为零的均值为零的正态分布随机变量)正态分布随机变量)MATLAB 统计工具箱统计工具箱 模型求解模型求解b,bint,r,rint,stats=regress(y,x,alpha)输入输入 x=n 4数据矩阵数据矩阵,第第1列为全列为全1向向量量alpha(置信置信水平水平,0.05)b 的的估计估计值值 bintb的置信区间的置信区间 r 残差向量残差向量y-xb rintr的置信区间的置信区间 Stats检验统计量检验统计量 R2,
5、F,p,s2 yn维数据向量维数据向量输出输出 由数据由数据 y,x1,x2估计估计 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311-3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p0.0001 s2=0.0490 0 1 2 3结果分析结果分析y的的90.54%可由模型确定可由模型确定 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311-3.6956-7.4989 0
6、.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p0.0001 s2=0.0490 0 1 2 3F远超过远超过F检验的临界值检验的临界值 p远小于远小于=0.05 2的置信区间包含零点的置信区间包含零点(右端点距零点很近右端点距零点很近)x2对因变量对因变量y 的的影响不太显著影响不太显著x22项显著项显著 可将可将x2保留在模型中保留在模型中 模型从整体上看成立模型从整体上看成立两模型销售量预测两模型销售量预测比较比较预测区间预测区间 7.8230,8.7636预测区间预测区间 7.8953,8.7592 控制价格差控制价格差x1=0.2元,投入
7、广告费元,投入广告费x2=6.5百万元百万元预测区间长度更短预测区间长度更短 略有增加略有增加 预测值预测值预测值预测值x2=6.5x1=0.2 x1x1x2x2两模型两模型 与与x1,x2关系的关系的比较比较交互作用影响的讨论交互作用影响的讨论价格差价格差 x1=0.1 价格差价格差 x1=0.3加大广告投入使销售量增加加大广告投入使销售量增加(x2大于大于6百万元)百万元)价格差较小时增价格差较小时增加的速率更大加的速率更大 x2价格优势会使销售量增加价格优势会使销售量增加 价格差较小时更需要靠价格差较小时更需要靠广告来吸引顾客的眼球广告来吸引顾客的眼球 完全二次多项式模型完全二次多项式模
8、型 MATLAB中有命令中有命令rstool直接求解直接求解从输出从输出 Export 可得可得鼠标移动十字线鼠标移动十字线(或下方窗口输入或下方窗口输入)可改变可改变x1,x2,左边窗口显示预测值左边窗口显示预测值 及预测区间及预测区间牙膏的销售量牙膏的销售量 建立统计回归模型的基本步骤建立统计回归模型的基本步骤 根据已知数据从常识和经验分析根据已知数据从常识和经验分析,辅之以作图辅之以作图,决定回归变量及函数形式决定回归变量及函数形式(先取尽量简单的形式先取尽量简单的形式).用用软件软件(如如MATLAB统计工具箱统计工具箱)求解求解.对结果作对结果作统计分析统计分析:R2,F,p,s2是
9、对模型整体评价是对模型整体评价,回归系数置信区间是否含零点检验其影响的显著性回归系数置信区间是否含零点检验其影响的显著性.模型改进模型改进,如增添二次项、交互项等如增添二次项、交互项等.对因变量进行对因变量进行预测预测.10.2 软件开发人员的薪金软件开发人员的薪金资历资历 从事专业工作的年数;管理从事专业工作的年数;管理 1=管理人员管理人员,0=非管理人员;非管理人员;教育教育 1=中学,中学,2=大学,大学,3=更高程度更高程度.建立模型研究薪金与资历、管理责任、教育程度的关系建立模型研究薪金与资历、管理责任、教育程度的关系.分析人事策略的合理性,作为新聘用人员薪金的参考分析人事策略的合
10、理性,作为新聘用人员薪金的参考.编编号号薪金薪金资资历历管管理理教教育育0113876111021160810303187011130411283102编编号号薪金薪金资资历历管管理理教教育育422783716124318838160244174831601451920717024619346200146名软件开发人员的档案资料名软件开发人员的档案资料 分析与假设分析与假设 y 薪金,薪金,x1 资历(年)资历(年)x2=1 管理人员,管理人员,x2=0 非管理人员非管理人员1=中学中学2=大学大学3=更高更高假设资历每加一年薪金的增长是常数;假设资历每加一年薪金的增长是常数;且管理、教育、资
11、历之间无交互作用且管理、教育、资历之间无交互作用.教教育育线性回归模型线性回归模型 a0,a1,a4是待估计的回归系数,是待估计的回归系数,是随机误是随机误差差 中学:中学:x3=1,x4=0;大学:大学:x3=0,x4=1;更高:更高:x3=0,x4=0 模型求解模型求解参数参数参数估计值参数估计值置信区间置信区间a011033 10258 11807 a1546 484 608 a26883 6248 7517 a3-2994-3826 -2162 a4148-636 931 R2=0.9567 F=226 p0.0001 s2=106R2,F,p 模型整体上可模型整体上可用用资历增加资历
12、增加1年年薪金增长薪金增长546 管理人员薪金管理人员薪金多多6883 中学程度薪金比中学程度薪金比更高的少更高的少2994 大学程度薪金比大学程度薪金比更高的多更高的多148 a4置信区间包含零置信区间包含零点,解释不可靠点,解释不可靠!中学:中学:x3=1,x4=0;大学:大学:x3=0,x4=1;更高:更高:x3=0,x4=0.x2=1 管理,管理,x2=0 非管理非管理x1资历资历(年年)残差分析方法残差分析方法 结果分析结果分析残差残差e 与资历与资历x1的关系的关系 e与管理与管理教育组合的关系教育组合的关系 残差全为正残差全为正,或全为负或全为负,管管理理教育组合处理不当教育组合
13、处理不当.残差大概分成残差大概分成3个水平个水平,6种管理种管理教育组合混在教育组合混在一起,未正确反映一起,未正确反映.应在模型中增加管理应在模型中增加管理x2与与教育教育x3,x4的交互项的交互项.组合组合123456管理管理010101教育教育112233管理与教育的组合管理与教育的组合进一步的模型进一步的模型增加管理增加管理x2与教育与教育x3,x4的交互项的交互项参数参数参数估计值参数估计值置信区间置信区间a01120411044 11363a1497486 508a270486841 7255a3-1727-1939 -1514a4-348-545 152a5-3071-3372
14、-2769a618361571 2101R2=0.9988 F=554 p0.0001 s2=3 104 R2,F有改进有改进,所有回归系数置信所有回归系数置信区间不含零点区间不含零点,模型完全可用模型完全可用 消除了不正常现象消除了不正常现象 异常数据异常数据(33号号)应去掉应去掉!e x1 e 组合组合去掉异常数据后去掉异常数据后的结果的结果参数参数参数估计值参数估计值置信区间置信区间a01120011139 11261a1498494 503a270416962 7120a3-1737-1818 -1656a4-356-431 281a5-3056-3171 2942a61997189
15、4 2100R2=0.9998 F=36701 p0.0001 s2=4 103e x1 e 组合组合R2:0.9567 0.99880.9998F:226 554 36701 s2:104 3 104 4 103置信区间长度更短置信区间长度更短残差残差图十分正常图十分正常最终模型的结果可以应用最终模型的结果可以应用模型应用模型应用 制订制订6种管理种管理教育组合人员的教育组合人员的“基础基础”薪金薪金(资历为资历为0)组合组合管理管理教育教育系数系数“基础基础”薪金薪金101a0+a39463211a0+a2+a3+a513448302a0+a410844412a0+a2+a4+a61988
16、2503a011200613a0+a218241中学:中学:x3=1,x4=0;大学:;大学:x3=0,x4=1;更高:更高:x3=0,x4=0 x1=0;x2=1 管理,管理,x2=0 非管理非管理大学程度管理人员比更高程度管理人员的薪金高大学程度管理人员比更高程度管理人员的薪金高.大学程度非管理人员比更高程度非管理人员的薪金略低大学程度非管理人员比更高程度非管理人员的薪金略低.对定性因素对定性因素(如管理、教育如管理、教育),可以,可以引入引入0-1变量变量处理,处理,0-1变量的个数可比定性因素的水平少变量的个数可比定性因素的水平少1.软件开发人员的薪金软件开发人员的薪金残差分析方法残差
17、分析方法可以发现模型的缺陷,可以发现模型的缺陷,引入交互作用项引入交互作用项常常能够改善模型常常能够改善模型.剔除异常数据剔除异常数据,有助于得到更好的结果,有助于得到更好的结果.注:可以直接对注:可以直接对6种管理种管理教育组合引入教育组合引入5个个0-1变量变量.10.3 酶促反应酶促反应 问问题题研究酶促反应(研究酶促反应(酶催化反应)酶催化反应)中嘌呤霉素对反中嘌呤霉素对反应速度与底物应速度与底物(反应物)(反应物)浓度之间关系的影响浓度之间关系的影响.建立数学模型,反映该酶促反应的速度与底建立数学模型,反映该酶促反应的速度与底物浓度以及经嘌呤霉素处理与否之间的关系物浓度以及经嘌呤霉素
18、处理与否之间的关系.设计了两个实验设计了两个实验:酶经过嘌呤霉素处理;:酶经过嘌呤霉素处理;酶未经嘌呤霉素处理酶未经嘌呤霉素处理.实验数据见下表实验数据见下表.方方案案底物浓度底物浓度(ppm)0.020.060.110.220.561.10反反应应速度速度处处理理764797107123 139 159 152 191 201 207 200未未处处理理6751848698115 131 124 144 158 160/基本模型基本模型 Michaelis-Menten模型模型y 酶促反应的速度酶促反应的速度,x 底物浓底物浓度度 1,2 待定待定系数系数 底物浓度较小时,反应速度大致与浓度
19、成正比;底物浓度较小时,反应速度大致与浓度成正比;底物浓度很大、渐进饱和时,反应速度趋于固定值底物浓度很大、渐进饱和时,反应速度趋于固定值.酶促反应的基本性质酶促反应的基本性质 xy0 1实验实验数据数据经嘌呤霉经嘌呤霉素处理素处理xy未经嘌呤未经嘌呤霉素处理霉素处理xy线性化模型线性化模型 经嘌呤霉素处理后实验数据的估计结果经嘌呤霉素处理后实验数据的估计结果 参数参数参数估参数估计值计值(10-3)置信区置信区间间(10-3)15.10723.5386 6.6758 20.24720.1757 0.3188R2=0.8557 F=59.2975 p0.0001 s2=3.5806 10-6对
20、对 1,2非线非线性性 对对 1,2线性线性 线性化模型结果分析线性化模型结果分析 x较大时,较大时,y有较大偏差有较大偏差 1/x较小时有很好的较小时有很好的线性趋势,线性趋势,1/x较大较大时出现很大的起落时出现很大的起落 参数估计时,参数估计时,x较小较小(1/x很大)的数据控很大)的数据控制了回归参数的确定制了回归参数的确定 1/y1/xxybeta,R,J=nlinfit(x,y,model,beta0)beta的置信区间的置信区间MATLAB 统计工具箱统计工具箱 输入输入 x自自变变量量数据矩阵数据矩阵y 因变量数据向量因变量数据向量beta 参数的估计值参数的估计值R 残差,残
21、差,J 估计预估计预测误差的测误差的Jacobi矩阵矩阵 model 模型的函数模型的函数M文件名文件名beta0 给定的参数初值给定的参数初值 输出输出 betaci=nlparci(beta,R,J)非线性模型参数估计非线性模型参数估计function y=f1(beta,x)y=beta(1)*x./(beta(2)+x);x=;y=;beta0=195.8027 0.04841;beta,R,J=nlinfit(x,y,f1,beta0);betaci=nlparci(beta,R,J);beta,betaci beta0线性化线性化模型估计结果模型估计结果 非线性模型结果分析非线性模
22、型结果分析参数参数参数估参数估计值计值置信区置信区间间 1212.6819197.2029 228.1609 20.06410.0457 0.0826 画面左下方的画面左下方的Export 输出其它统计结果输出其它统计结果.拖动画面的十字线,得拖动画面的十字线,得y的预测值和预测区间的预测值和预测区间剩余标准差剩余标准差s=10.9337最终反应速度为最终反应速度为其他输出其他输出命令命令nlintool 给出交互画面给出交互画面o 原始数据原始数据+拟合结果拟合结果 半速度点半速度点(达到最终速度达到最终速度一半时的一半时的x值值)为为混合反应模型混合反应模型 x1为底物浓度,为底物浓度,x
23、2为一示性变量为一示性变量 x2=1表示经过处理,表示经过处理,x2=0表示未经处理表示未经处理 1是未经处理的最终反应速度是未经处理的最终反应速度 1是经处理后最终反应速度的增长值是经处理后最终反应速度的增长值 2是未经处理的反应的半速度点是未经处理的反应的半速度点 2是经处理后反应的半速度点的增长值是经处理后反应的半速度点的增长值 在同一模型中考虑嘌呤霉素处理的影响在同一模型中考虑嘌呤霉素处理的影响o 原始数据原始数据+拟合结果拟合结果 混合模型求解混合模型求解用用nlinfit 和和 nlintool命令命令估计结果和预测估计结果和预测剩余标准差剩余标准差s=10.4000 参数参数参数
24、估参数估计值计值置信区置信区间间 1160.2802145.8466 174.7137 20.04770.0304 0.0650 152.403532.4130 72.3941 20.0164-0.0075 0.0403 2置信区间包含零点,置信区间包含零点,表明表明 2对因变量对因变量y的影响不显著的影响不显著参数初值参数初值(基于对数据的分析基于对数据的分析)经嘌呤霉素处理的作用不影响半速度点参数经嘌呤霉素处理的作用不影响半速度点参数未经未经处理处理经处理经处理o 原始数据原始数据+拟合结果拟合结果 未经未经处理处理经处理经处理简化的混合模型简化的混合模型 简化的混合模型简化的混合模型形式
25、简单,形式简单,参数置信区参数置信区间间不含零点不含零点.剩余标准差剩余标准差 s=10.5851,比一般混合模型略大,比一般混合模型略大.估计结果和预测估计结果和预测参参数数参数估参数估计值计值置信区置信区间间 1166.6025 154.4886 178.7164 20.05800.0456 0.0703 142.025228.9419 55.1085一般混合模型与简化混合模型预测比较一般混合模型与简化混合模型预测比较实际值实际值一般模型一般模型预测值预测值(一般一般模型模型)简简化模型化模型预测值预测值(简简化化模型模型)6747.34439.207842.73585.44465147.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 经典 案例
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。