高中数学知识点整理(苏教版).doc
《高中数学知识点整理(苏教版).doc》由会员分享,可在线阅读,更多相关《高中数学知识点整理(苏教版).doc(45页珍藏版)》请在咨信网上搜索。
45 天材教育集团丹阳分校 第一讲 集 合 一、知识精点讲解 1.集合:某些指定的对象集在一起成为集合。 (1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作; (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系: (1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或); 集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B; (2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U; (2)若S是一个集合,AS,则,=称S中子集A的补集; 4.交集与并集: (1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。 (2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。。 注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 第二讲 函数概念与表示 一、知识精点讲解 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。 2.构成函数的三要素:定义域、对应关系和值域 (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误; ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。 (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。 ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。 3.两个函数的相等: 函数的定义含有三个要素,即定义域A、值域C和对应法则f。当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。 4.区间:区间的分类:开区间、闭区间、半开半闭区间; 5.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。 注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。 (2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。 6.常用的函数表示法:(1)解析法: (2)列表法:(3)图象法: 7.分段函数 若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数 若y=f(u),u=g(x),xÎ(a,b),uÎ(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。 第三讲 函数的基本性质 一、要点精讲 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(-x)与f(x)的关系; 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; ②设,的定义域分别是,那么在它们的公共定义域上: 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇 2.单调性 (1)定义:一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数); 注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 (3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射g : x→u=g(x) 的象集: ①若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 (4)判断函数单调性的方法步骤: 任取x1,x2∈D,且x1<x2; 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)-f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。 (5)简单性质 ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数增函数是增函数; 减函数减函数是减函数; 增函数减函数是增函数; 减函数增函数是减函数。 3.最值 (1)定义: 最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 注意: 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。 (2)利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 4.周期性 (1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数; (2)性质:①f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为。 第四讲 基本初等函数 一、要点精讲 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根, 1)当为奇数时,次方根记作; 2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作。 ②性质:1);2)当为奇数时,; 3)当为偶数时,。 (2).幂的有关概念 ①规定:1)N*;2); n个 3)Q,4)、N* 且。 ②性质:1)、Q); 2)、 Q); 3) Q)。 (注)上述性质对r、R均适用。 (3).对数的概念 ①定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数。 1)以10为底的对数称常用对数,记作; 2)以无理数为底的对数称自然对数,,记作; ②基本性质: 1)真数N为正数(负数和零无对数); 2); 3); 4)对数恒等式:。 ③运算性质:如果则 1); 2); 3)R)。 ④换底公式: 1);2)。 2.指数函数与对数函数 (1)指数函数:①定义:函数称指数函数, 1)函数的定义域为R; 2)函数的值域为; 3)当时函数为减函数,当时函数为增函数。 ②函数图像: a>1 0<a<1 图 象 性 质 (1)定义域:R (2)值域:(0,+∞) (3)过定点(0,1),即x=0时,y=1 (4)x>0时,y>1;x<0时,0<y<1 (4)x>0时,0<y<1;x<0时,y>1. (5)在 R上是增函数 (5)在R上是减函数 (2)对数函数:①定义:函数称对数函数, a>1 0<a<1 图 象 性 质 (1)定义域:(0,+∞) (2)值域:R (3)过点(1,0),即当x=1时,y=0 (4)时 时 y>0 时 时 (5)在(0,+∞)上是增函数 在(0,+∞)上是减函数 第五讲 函数图象及数字特征 一、知识精点讲解 1.函数图象 (1)作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法。 作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。 用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。 (2)三种图象变换:平移变换、对称变换和伸缩变换等等; ①平移变换: Ⅰ、水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到; 1)y=f(x)y=f(x+h); 2)y=f(x) y=f(x-h); Ⅱ、竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到; 1)y=f(x) y=f(x)+h; 2)y=f(x) y=f(x)-h。 ②对称变换: Ⅰ、函数的图像可以将函数的图像关于轴对称即可得到; y=f(x) y=f(-x) Ⅱ、函数的图像可以将函数的图像关于轴对称即可得到 y=f(x) y= -f(x) Ⅲ、函数的图像可以将函数的图像关于原点对称即可得到 y=f(x) y= -f(-x) Ⅳ、函数的图像可以将函数的图像关于直线对称得到 y=f(x) x=f(y) Ⅴ、函数的图像可以将函数的图像关于直线对称即可得 y=f(x) y=f(2a-x)。 ③翻折变换: Ⅰ、函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到; Ⅱ、函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到 ④伸缩变换: Ⅰ、函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到; y=f(x)y=af(x) Ⅱ、函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到。 f(x)y=f(x)y=f() (3)识图:分布范围、变化趋势、对称性、周期性等等方面。 2.幂函数 在第一象限的图象,可分为如图中的三类: 图 在考查学生对幂函数性的掌握和运用函数的性质解决问题时,所涉及的幂函数中限于在集合中取值。 幂函数有如下性质: ⑴它的图象都过(1,1)点,都不过第四象限,且除原点外与坐标轴都不相交; ⑵定义域为R或的幂函数都具有奇偶性,定义域为的幂函数都不具有奇偶性; ⑶幂函数都是无界函数;在第一象限中,当时为减函数,当时为增函数; ⑷任意两个幂函数的图象至少有一个公共点(1,1),至多有三个公共点; 第六讲 函数与方程 一、知识精点讲解 1.方程的根与函数的零点 (1)函数零点概念:对于函数,把使成立的实数叫做函数的零点。 函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。 二次函数的零点: 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点; 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。 零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。既存在,使得,这个也就是方程的根。 2.二分法 二分法及步骤: 对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 给定精度,用二分法求函数的零点近似值的步骤如下: (1)确定区间,,验证·,给定精度; (2)求区间,的中点; (3)计算: ①若=,则就是函数的零点; ②若·<,则令=(此时零点); ③若·<,则令=(此时零点); 注:用二分法求函数的变号零点:二分法的条件·表明用二分法求函数的近似零点都是指变号零点。 3.二次函数的基本性质 (1)二次函数的三种表示法:y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n。 (2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0= (p+q)。 若-<p,则f(p)=m,f(q)=M; 若p≤-<x0,则f(-)=m,f(q)=M; 若x0≤-<q,则f(p)=M,f(-)=m; 若-≥q,则f(p)=M,f(q)=m。 (3)二次方程f(x)=ax2+bx+c=0的实根分布及条件。 ①方程f(x)=0的两根中一根比r大,另一根比r小a·f(r)<0; ②二次方程f(x)=0的两根都大于r ③二次方程f(x)=0在区间(p,q)内有两根 ④二次方程f(x)=0在区间(p,q)内只有一根f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立。 第七讲 空间几何体 一、知识精点讲解 1.柱、锥、台、球的结构特征 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。 棱锥与圆锥统称为锥体。 (3)台 棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。 圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。 圆台和棱台统称为台体。 (4)球 以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。 (5)组合体 由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。 2.空间几何体的三视图 三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。 他具体包括: (1)正视图:物体前后方向投影所得到的投影图; 它能反映物体的高度和长度; (2)侧视图:物体左右方向投影所得到的投影图; 它能反映物体的高度和宽度; (3)俯视图:物体上下方向投影所得到的投影图; 它能反映物体的长度和宽度; 第八讲 空间几何体的表面积和体积 一、知识精点讲解 1.多面体的面积和体积公式 名称 侧面积(S侧) 全面积(S全) 体 积(V) 棱 柱 棱柱 直截面周长×l S侧+2S底 S底·h=S直截面·h 直棱柱 ch S底·h 棱 锥 棱锥 各侧面积之和 S侧+S底 S底·h 正棱锥 ch′ 棱 台 棱台 各侧面面积之和 S侧+S上底+S下底 h(S上底+S下底+) 正棱台 (c+c′)h′ 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式 名称 圆柱 圆锥 圆台 球 S侧 2πrl πrl π(r1+r2)l S全 2πr(l+r) πr(l+r) π(r1+r2)l+π(r21+r22) 4πR2 V πr2h(即πr2l) πr2h πh(r21+r1r2+r22) πR3 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径。 第九讲 空间中的平行关系 一、复习目标要求 1.平面的基本性质与推论 借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理: ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内; ◆公理2:过不在一条直线上的三点,有且只有一个平面; ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线; ◆公理4:平行于同一条直线的两条直线平行; ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 2.空间中的平行关系 以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理: ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行; 通过直观感知、操作确认,归纳出以下性质定理,并加以证明: ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面交线与该直线平行; ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行; ◆垂直于同一个平面的两条直线平行 能运用已获得的结论证明一些空间位置关系的简单命题。 二、要点精讲 1.平面概述 (1)平面的两个特征:①无限延展 ②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面 (3)平面的表示:用一个小写的希腊字母、、等表示,如平面、平面;用表示平行四边形的两个相对顶点的字母表示,如平面AC。 2.三公理三推论: 公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内: A,B,A,B 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 公理3:经过不在同一直线上的三点,有且只有一个平面。 推论一:经过一条直线和这条直线外的一点,有且只有一个平面。 推论二:经过两条相交直线,有且只有一个平面。 推论三:经过两条平行直线,有且只有一个平面。 3.空间直线: (1)空间两条直线的位置关系: 相交直线——有且仅有一个公共点; 平行直线——在同一平面内,没有公共点; 异面直线——不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。 异面直线的画法常用的有下列三种: (2)平行直线: 在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。 (3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:与a是异面直线。 4.直线和平面的位置关系 (1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点); (3)直线和平面平行(没有公共点)——用两分法进行两次分类。 它们的图形分别可表示为如下,符号分别可表示为,,。 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式:. 5.两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点) (1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。 定理的模式: 推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。 推论模式: (2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 第十讲 空间中的垂直关系 一、知识精点讲解 1.线线垂直 判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。 推理模式: 。 注意:⑴三垂线指PA,PO,AO都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a的位置,并注意两定理交替使用。 2.线面垂直 定义:如果一条直线l和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l和平面α互相垂直其中直线l叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面α垂直记作:l⊥α。 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 3.面面垂直 两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。 两平面垂直的判定定理:(线面垂直面面垂直) 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 两平面垂直的性质定理:(面面垂直线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。 第十一讲 直线、圆的方程 一、知识精点讲解 1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为。 2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=tan;当直线的倾斜角等于900时,直线的斜率不存在。 过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k=tan(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为900)。 4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。 名称 方程 说明 适用条件 斜截式 y=kx+b k——斜率 b——纵截距 倾斜角为90°的直线不能用此式 点斜式 y-y0=k(x-x0) (x0,y0)——直线上 已知点,k——斜率 倾斜角为90°的直线不能用此式 两点式 = (x1,y1),(x2,y2)是直线上两个已知点 与两坐标轴平行的直线不能用此式 截距式 +=1 a——直线的横截距 b——直线的纵截距 过(0,0)及与两坐标轴平行的直线不能用此式 一般式 Ax+By+C=0 ,,分别为斜率、横截距和纵截距 A、B不能同时为零 5.圆的方程 圆心为,半径为r的圆的标准方程为:。特殊地,当时,圆心在原点的圆的方程为:。 圆的一般方程,圆心为点,半径,其中。 二元二次方程,表示圆的方程的充要条件是: ①、项项的系数相同且不为0,即; ②、没有xy项,即B=0;③、。 第十二讲 直线、圆的位置关系 一、知识精点讲解 1.直线l1与直线l2的的平行与垂直 (1)若l1,l2均存在斜率且不重合: ①l1//l2 k1=k2;②l1l2 k1k2=-1。 (2)若 若A1、A2、B1、B2都不为零。 ①l1//l2; ②l1l2 A1A2+B1B2=0; ③l1与l2相交; ④l1与l2重合; 注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。 2. 距离 (1)两点间距离:若,则 特别地:轴,则、轴,则。 (2)平行线间距离:若, 则:。注意点:x,y对应项系数应相等。 (3)点到直线的距离:,则P到l的距离为: 3.直线与圆的位置关系有三种 (1)若,; (2); (3)。 还可以利用直线方程与圆的方程联立方程组求解,通过解的个数来判断: (1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交; (2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切; (3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离; 即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C到直线l的距离为d,则直线与圆的位置关系满足以下关系: 相切d=rΔ=0; 相交d<rΔ>0; 相离d>rΔ<0。 4.两圆位置关系的判定方法 设两圆圆心分别为O1,O2,半径分别为r1,r2,。 ; ; ; ; ; 外离 外切 相交 内切 内含 判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决。 第十三讲 任意角的三角函数及诱导公式 一、知识精点讲解 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点。 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。 2.终边相同的角、区间角与象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。 终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。 区间角是介于两个角之间的所有角,如α∈{α|≤α≤}=[,]。 3.弧度制 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径。 角度制与弧度制的换算主要抓住。 弧度与角度互换公式:1rad=°≈57.30°=57°18ˊ、1°=≈0.01745(rad)。 弧长公式:(是圆心角的弧度数), 扇形面积公式:。 4.三角函数定义 在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;;。 a的终边 P(x,y)) O x y 利用单位圆定义任意角的三角函数,设是一个任意角,它的终边与单位圆交于点,那么: (1)叫做的正弦,记做,即; (2)叫做的余弦,记做,即; (3)叫做的正切,记做,即。 O x y a角的终边 P T M A 5.三角函数线 三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。 以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。当角为第一象限角时,则其终边与单位圆必有一个交点,过点作轴交轴于点,根据三角函数的定义:;。 我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定: 当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有负值;其中为点的横坐标.这样,无论那种情况都有 同理,当角的终边不在轴上时,以为始点、为终点, 规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有负值;其中为点的横坐标。 这样,无论那种情况都有。像这种被看作带有方向的线段,叫做有向线段。 如上图,过点作单位圆的切线,这条切线必然平行于y轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有 我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线。 6.同角三角函数关系式 使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。 几个常用关系式:sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示) 同理可以由sinα-cosα或sinα·cosα推出其余两式。 ②. ③当时,有。 7.诱导公式 可用十个字概括为“奇变偶不变,符号看象限”。 诱导公式一:,,其中 诱导公式二: ; 诱导公式三: ; 诱导公式四:; 诱导公式五:; - sin -sin sin -sin -sin sin cos cos cos -cos -cos cos cos sin (1)要化的角的形式为(为常整数); (2)记忆方法:“函数名不变,符号看象限”; (3)sin(kπ+α)=(-1)ksinα;cos(kπ+α)=(-1)kcosα(k∈Z); (4);。 第十四讲 三角函数的图象与性质 一、知识精点讲解 1- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识点 整理 苏教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文