立体几何文科高考题.docx
《立体几何文科高考题.docx》由会员分享,可在线阅读,更多相关《立体几何文科高考题.docx(23页珍藏版)》请在咨信网上搜索。
1、2011年高考立体几何文科汇编(江苏)16、如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;(2) 平面BEF平面PAD(安徽卷)(19)(本小题满分13分)如图,为多面体,平面与平面垂直,点在线段上,OAB,OAC,ODE,ODF都是正三角形。()证明直线;()求棱锥的体积.(北京卷)17(本小题共14分)如图,在四面体PABC中,PCAB,PABC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.()求证:DE平面BCP; ()求证:四边形DEFG为矩形;()是否存在点Q,到四面体PABC六条棱的中点的距
2、离相等?说明理由.(福建卷)20(本小题满分12分)如图,四棱锥P-ABCD中,PA底面ABCD,ABAD,点E在线段AD上,且CEAB。 (I)求证:CE平面PAD;(11)若PA=AB=1,AD=3,CD=,CDA=45,求四棱锥P-ABCD的体积(广东)18(本小题满分13分)图5所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的A,A,B,B分别为,的中点,分别为的中点(1)证明:四点共面;(2)设G为A A中点,延长到H,使得证明:(湖北)18(本小题满分12分)如图,已知正三棱柱-的底面边长为2,侧棱长为,点E在侧棱上,点F在侧棱上
3、,且,(I) 求证:;(II) 求二面角的大小。(湖南卷)19(本题满分12分)如图3,在圆锥中,已知的直径的中点(I)证明:(II)求直线和平面所成角的正弦值(江西卷)18.(本小题满分12分)如图,在交AC于 点D,现将(1)当棱锥的体积最大时,求PA的长;(2)若点P为AB的中点,E为(辽宁卷)18(本小题满分12分)如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QA=AB=PD(I)证明:PQ平面DCQ;(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值(全国卷)20(本小题满分l2分)(注意:在试题卷上作答无效)如图,四棱锥中, ,,侧面为等边三角形, (I)证明
4、:平面SAB; (II)求AB与平面SBC所成的角的大小。(山东卷)19(本小题满分12分)如图,在四棱台中,平面,底面是平行四边形,60()证明:;()证明: (陕西卷)16(本小题满分12分)如图,在ABC中,ABC=45,BAC=90,AD是BC上的高,沿AD把ABD折起,使BDC=90。()证明:平面平面;()设BD=1,求三棱锥D的表面积。(上海卷)20、(14分)已知是底面边长为1的正四棱柱,高。求: 异面直线与所成的角的大小(结果用反三角函数表示); 四面体的体积。(四川卷)19(本小题共l2分)如图,在直三棱柱ABCA1B1C1中,BAC=90,AB=AC=AA1=1,延长A1
5、C1至点P,使C1PA1C1,连接AP交棱CC1于D()求证:PB1平面BDA1;()求二面角AA1DB的平面角的余弦值;(天津卷)17(本小题满分13分)如图,在四棱锥中,底面为平行四边形,为中点,平面, ,为中点()证明:/平面;()证明:平面;()求直线与平面所成角的正切值(新课标)18(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,底面ABCD(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高(浙江卷)(20)(本题满分14分)如图,在三棱锥中,为的中点,平面,垂足落在线段上()证明:;()已知,求二面角的大小(重庆卷)20(本小题满分12分,()小问6分,()
6、小问6分) 如题(20)图,在四面体中,平面ABC平面, ()求四面体ABCD的体积; ()求二面角C-AB-D的平面角的正切值。2011年高考立体几何文科答案汇编(江苏卷)(安徽卷)(19)(本小题满分13分)本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力. (I)证明:设G是线段DA与EB延长线的交点. 由于OAB与ODE都是正三角形,所以=,OG=OD=2,同理,设是线段DA与FC延长线的交点,有又由于G和都在线段DA的延长线上,所以G与重合.=在GED和GFD中,由=和OC,可知B和C分别是G
7、E和GF的中点,所以BC是GEF的中位线,故BCEF. (II)解:由OB=1,OE=2,而OED是边长为2的正三角形,故所以过点F作FQDG,交DG于点Q,由平面ABED平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,所以(北京卷)(17)(共14分)证明:()因为D,E分别为AP,AC的中点,所以DE/PC。又因为DE平面BCP,所以DE/平面BCP。()因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE/PC/FG,DG/AB/EF。所以四边形DEFG为平行四边形,又因为PCAB,所以DEDG,所以四边形DEFG为矩形。()存在点Q满足条件,理由如下:连接DF,EG,
8、设Q为EG的中点由()知,DFEG=Q,且QD=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。与()同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.(福建卷)20本小题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数形结合思想,化归与转化思想,满分12分 (I)证明:因为平面ABCD,平面ABCD,所以因为又所以平面PAD。(II)由(I)可知,在中,DE=CD又因为,所以四边形ABCE为矩形,所以又平面ABCD,PA=1,所以(广
9、东)18(本小题满分13分)证明:(1)中点,连接BO2直线BO2是由直线AO1平移得到共面。 (2)将AO1延长至H使得O1H=O1A,连接/由平移性质得=HB(湖北卷)18本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)解法1:()由已知可得于是有所以又由 ()在中,由()可得于是有EF2+CF2=CE2,所以又由()知CF C1E,且,所以CF 平面C1EF,又平面C1EF,故CF C1F。于是即为二面角ECFC1的平面角。由()知是等腰直角三角形,所以,即所求二面角ECFC1的大小为。解法2:建立如图所示的空间直角坐标系,则由已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 文科 考题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。