人教版数学九年级下册全册全套ppt课件.ppt
《人教版数学九年级下册全册全套ppt课件.ppt》由会员分享,可在线阅读,更多相关《人教版数学九年级下册全册全套ppt课件.ppt(863页珍藏版)》请在咨信网上搜索。
1、人教版九年级数学下册人教版九年级数学下册课件课件全册教学课件全册教学课件26.1 反比例函数第二十六章 反比例函数导入新课讲授新课当堂练习课堂小结26.1.1 反比例函数1.理解并掌握反比例函数的概念.(重点)2.从实际问题中抽象出反比例函数的概念,能根据已知条件确定反比例函数的解析式.(重点、难点)学习目标生活中我们常常通过控制电阻的变化来实现舞台灯光的效果.在电压U 一定时,当R变大时,电流I变小,灯光就变暗,相反,当R变小时,电流I变大,灯光变亮.你能写出这些量之间的关系式吗?当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越
2、少反而越危险,你认同吗?为什么?讲授新课讲授新课反比例函数的概念一下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.合作探究(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68104km2,人均占有面积S(km2/人)随全市总人口n(单位:人)的变化而变化.观察以上三个解析式,你觉得它们有什么共同特点?问题:都具有 的形式,其中 是常数分式分子(k为常数,k 0)的函
3、数,叫做反比例函数,其中 x 是自变量,y 是函数.一般地,形如反比例函数(k0)的自变量x 的取值范围是什么?思考:因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.但实际问题中,应根据具体情况来确定反比例函数自变量的取值范围.例如,在前面得到的第一个解析式中,t 的取值范围是t0,且当t 取每一个确定的值时,v 都有唯一确定的值与其对应.反比例函数除了可以用(k 0)的形式表示,还有没有其他表达方式?想一想:反比例函数的三种表达方式:(注意k 0)下列函数是不是反比例函数?若是,请指出 k 的值.是,k=3不是不是不是练一练是,例1已知函数是反比例函数,求m 的值.
4、典例精析解得m=2.方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中x 的次数为1,且系数不等于0.解:因为是反比例函数,所以2m2+3m3=1,2m2+m10.2.已知函数是反比例函数,则k 必须满足.1.当m=时,是反比例函数.k2且k11练一练确定反比例函数的解析式二例2已知y 是x 的反比例函数,并且当x=2时,y=6.(1)写出y 关于x 的函数解析式;提示:因为y 是x 的反比例函数,所以设.把x=2和y=6代入上式,就可求出常数k 的值.解:设.因为当x=2时,y=6,所以有 解得k=12.因此(2)当x=4时,求y 的值.解:把x=
5、4代入,得方法总结:用待定系数法求反比例函数解析式的一般步骤:设出含有待定系数的反比例函数解析式,将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;解方程,求出待定系数;写出反比例函数解析式.已知y 与x+1成反比例,并且当x=3时,y=4.(1)写出y 关于x 的函数解析式;(2)当x=7时,求y 的值练一练(2)当x=7时,所以有,解得k=16,因此.解:(1)设,因为当x=3时,y=4,建立简单的反比例函数模型三例3人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度,如果视野f(度)是车
6、速v(km/h)的反比例函数,求f 关于v 的函数解析式,并计算当车速为100km/h时视野的度数.当v=100时,f=40.所以当车速为100km/h时视野为40度.解:设.由题意知,当v=50时,f=80,解得k=4000.因此所以例4 如图所示,已知菱形ABCD 的面积为180,设它的两条对角线AC,BD的长分别为x,y.写出变量y与x 之间的关系式,并指出它是什么函数.ABCD解:因为菱形的面积等于两条对角线长乘积的一半,所以 所以变量y与x 之间的关系式为 ,它是反比例函数.A.B.C.D.1.下列函数中,y 是x 的反比例函数的是()A当堂练习当堂练习2.生活中有许多反比例函数的例
7、子,在下面的实例中,x 和y 成反比例函数关系的有()x人共饮水10kg,平均每人饮水 y kg;底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 yA.1个 B.2个 C.3个 D.4个B3.填空(1)若是反比例函数,则m 的取值范围是.(2)若是反比例函数,则m的取值范围是.(3)若是反比例函数,则m的取值范围是.m 1m 0且m 2m=14.已知变量y 与x 成反比例,且当x=3时,y=4.(1)写出y 关于x 的函数解析式;(2)当y=6时,求x 的值
8、.解:(1)设.因为当x=3时,y=4,解得k=12.因此,y 关于x 的函数解析式为所以有(2)把y=6代入,得解得x=2.5.小明家离学校1000m,每天他往返于两地之间,有时步行,有时骑车假设小明每天上学时的平均速度为v(m/min),所用的时间为t(min)(1)求变量v 和t 之间的函数关系式;解:(t0)(2)小明星期二步行上学用了25min,星期三骑自行车上学用了8min,那么他星期三上学时的平均速度比星期二快多少?1254085(m/min)答:他星期三上学时的平均速度比星期二快85m/min.解:当t25时,;当t8时,.能力提升:6.已知y=y1+y2,y1与(x1)成正比
9、例,y2与(x+1)成反比例,当x=0时,y=3;当x=1时,y=1,求:(1)y 关于x 的关系式;解:设y1=k1(x1)(k10),(k20),则.x=0时,y=3;x=1时,y=1,3=k1+k2,k1=1,k2=2.(2)当x=时,y 的值.解:把x=代入(1)中函数关系式,得y=课堂小结课堂小结建立反比例函数模型用待定系数法求反比例函数解析式反比例函数:定义/三种表达方式 反比例函数26.1.2 反比例函数的图象和性质第二十六章 反比例函数导入新课讲授新课当堂练习课堂小结第1课时 反比例函数的图象和性质学习目标1.经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程(重
10、点、难点)2.会画反比例函数图象,了解和掌握反比例函数的图象和性质.(重点)3.能够初步应用反比例函数的图象和性质解题.(重点、难点)7月30日,2017游泳世锦赛在西班牙布达佩斯的多瑙河体育中心落下帷幕.在8天的争夺中,中国代表团不断创造佳绩,以12金12银6铜的成绩排名奖牌榜第二.孙杨在此次世锦赛中收获了个人世锦赛首枚200米自由泳金牌.回顾我们上一课的学习内容,你能写出200米自由泳比赛中,孙杨游泳所用的时间 t(s)和游泳速度 v(m/s)之间的数量关系吗?试一试,你能在坐标轴中画出这个函数的图象吗?反比例函数的图象和性质讲授新课讲授新课例1 画反比例函数 与 的图象.合作探究提示:画
11、函数的图象步骤一般分为:列表描点连线.需要注意的是在反比例函数中自变量x 不能为0.解:列表如下:x65432112345611.21.52366321.51.2122.43466432.42O2描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点56xy432112345634156123456连线:用光滑的曲线顺次连接各点,即可得的图象x 增大O256xy432112345634156123456观察这两个函数图象,回答问题:思考:(1)每个函数图象分别位于哪些象限?(2)在每一个象限内,随着x的增大,y 如何变化?你能由它们的解析式说明理由吗?y 减小(3)对于反比例函数(k
12、0),考虑问题(1)(2),你能得出同样的结论吗?Oxy由两条曲线组成,且分别位于第一、三象限它们与x 轴、y 轴都不相交;在每个象限内,y 随x 的增大而减小.反比例函数(k0)的图象和性质:归纳:1.反比例函数的图象大致是()CyA.xyoB.xoD.xyoC.xyo练一练例2 反比例函数的图象上有两点A(x1,y1),B(x2,y2),且A,B 均在该函数图象的第一象限部分,若x1x2,则y1与y2的大小关系为()A.y1y2B.y1=y2C.y10时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随x 的增大而减小;(2)当k”“”或“=”).练一练例3已知反比例函数,y 随x
13、的增大而增大,求a的值.解:由题意得a2+a7=1,且a1x20,则y1y20.6.已知反比例函数y=mxm5,它的两个分支分别在第一、第三象限,求m 的值.解:因为反比例函数y=mxm5的两个分支分别在第一、第三象限,所以有m25=1,m0,解得 m=2.能力提升:7.点(a1,y1),(a1,y2)在反比例函数(k0)的图象上,若y1y2,求a的取值范围.解:由题意知,在图象的每一支上,y 随x 的增大而减小.当这两点在图象的同一支上时,y1y2,a1a+1,无解;当这两点分别位于图象的两支上时,y1y2,必有y10y2.a10,a+10,解得:1a1.故a 的取值范围为:1a1反比例函数
14、(k0)kk 0k 0时,两条曲线分别位于第一、三象限,在每个象限内,y 随x 的增大而减小;当k 0时,两条曲线分别位于第二、四象限,在每个象限内,y 随x 的增大而增大.复习引入问题1 问题2 用待定系数法求反比例函数的解析式一典例精析例1已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y 随x 的增大如何变化?解:因为点A(2,6)在第一象限,所以这个函数的图象位于第一、三象限;在每一个象限内,y 随x 的增大而减小.(2)点B(3,4),C(,),D(2,5)是否在这个函数的图象上?解:设这个反比例函数的解析式为,因为点A(2,6)在其图象上,所以有,解得k=
15、12.因为点B,C 的坐标都满足该解析式,而点D的坐标不满足,所以点B,C 在这个函数的图象上,点D不在这个函数的图象上.所以反比例函数的解析式为.练一练已知反比例函数 的图象经过点A(2,3)(1)求这个函数的表达式;解:反比例函数 的图象经过点A(2,3),把点A 的坐标代入表达式,得,解得k=6.这个函数的表达式为.(2)判断点B(1,6),C(3,2)是否在这个函数的图象上,并说明理由;解:分别把点B,C 的坐标代入反比例函数的解析式,因为点B 的坐标不满足该解析式,点C 的坐标满足该解析式,所以点B 不在该函数的图象上,点C 在该函数的图象上(3)当3x 0,当x 0时,y 随x 的
16、增大而减小,当3x 1时,6y 2.反比例函数图象和性质的综合二(1)图象的另一支位于哪个象限?常数m 的取值范围是什么?Oxy例2如图,是反比例函数图象的一支.根据图象,回答下列问题:解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.由因为这个函数图象位于第一、三象限,所以m50,解得m5.(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2).如果x1x2,那么y1和y2有怎样的大小关系?解:因为m50,所以在这个函数图象的任一支上,y 都随x 的增大而减小,因此当x1x2时,y1y2.练一练如图,是反比例函数的图象,则k 的值可以是()A1B3C1
17、D0OxyB反比例函数解析式中 k 的几何意义三1.在反比例函数的图象上分别取点P,Q 向x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:合作探究5123415xyOPS S1 1 S S2 2P(2,2)Q(4,1)S1的值S2的值 S1与S2的关系猜想S1,S2与k的关系44S1=S2S1=S2=k5 4 3 2143232451QS1的值S2的值S1与S2的关系猜想与k 的关系P(1,4)Q(2,2)2.若在反比例函数中也用同样的方法分别取P,Q 两点,填写表格:44S1=S2S1=S2=kyxOPQS S1 1 S S2 2由前面的探究过程,可以猜想:若点P是图象上
18、的任意一点,作PA 垂直于x 轴,作PB 垂直于y 轴,矩形AOBP 的面积与k的关系是S矩形AOBP=|k|.yxOPS我们就k0的情况给出证明:设点P 的坐标为(a,b)AB点P(a,b)在函数的图象上,即ab=k.S矩形AOBP=PBPA=ab=ab=k;若点P在第二象限,则a0,若点P 在第四象限,则a0,bSBSCB.SASBSCC.SA=SB=SCD.SASC0)图像上的任意两点,PA,CD 垂直于x 轴.设POA 的面积为S1,则S1=;梯形CEAD 的面积为S2,则S1与S2的大小关系是S1S2;POE 的面积S3和S2的大小关系是S2S3.2S1S2S3如图所示,直线与双曲线
19、交于A,B 两点,P 是AB 上的点,AOC 的面积S1、BOD 的面积S2、POE 的面积S3的大小关系为.S1=S2S3练一练解析:由反比例函数面积的不变性易知S1=S2.PE 与双曲线的一支交于点F,连接OF,易知,SOFE=S1=S2,而S3SOFE,所以S1,S2,S3的大小关系为S1=S20b 0k10k20b 0合作探究xyOxyOk20b0k10k20 xyOk10 xyO 例6函数y=kxk与的图象大致是()D.xyOC.yA.yxB.xyODOOk0k0k0k0由一次函数增减性得k0由一次函数与y轴交点知k0,则k0 x提示:由于两个函数解析式都含有相同的系数k,可对k 的
20、正负性进行分类讨论,得出符合题意的答案.在同一直角坐标系中,函数与y=ax+1(a0)的图象可能是()A.yxOB.yxOC.yxOD.yxOB练一练例7 如图是一次函数y1=kx+b 和反比例函数的图象,观察图象,当y1y2时,x的取值范围为.23yx02x 3解析:y1y2即一次函数图象处于反比例函数图象的上方时.观察右图,可知2x 3.方法总结:对于一些题目,借助函数图象比较大小更加简洁明了.练一练如图,一次函数y1=k1x+b(k10)的图象与反比例函数的图象交于A,B 两点,观察图象,当y1y2时,x 的取值范围是12yx0AB1x 2例8 已知一个正比例函数与一个反比例函数的图象交
21、于点 P(3,4).试求出它们的解析式,并画出图象.由于这两个函数的图象交于点P (3,4),则点P(3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个解析式.解:设正比例函数、反比例函数的解析式分别为y=k1x 和.所以,.解得,.P则这两个函数的解析式分别为 和 ,它们的图象如图所示.这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?想一想:反比例函数的图象与正比例函数y=3x 的图象的交点坐标为(2,6),(2,6)解析:联立两个函数解析式,解方程即可.练一练例9已知A(4,),B(1,2)是一次函数y=kx+b与反比例函数图象的两个交点,求一次函数解析式
22、及m 的值.解:把A(4,),B(1,2)代入y=kx+b中,得4k+b=,k+b=2,k=,解得b=,所以一次函数的解析式为y=x+.把 B(1,2)代入中,得m=12=2.当堂练习当堂练习A.4B.2C.2D.不确定1.如图所示,P 是反比例函数的图象上一点,过点P 作PBx 轴于点B,点A 在y轴上,ABP的面积为2,则k 的值为()OBAPxyA2.反比例函数的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式是_3.如图,直线y=k1x+b 与反比例函数(x0)交于A,B两点,其横坐标分别为1和5,则不等式k1x+b的解集是_1x5OBAxy154.已知反比
23、例函数的图象经过点A(2,4).(1)求k 的值;解:反比例函数 的图象经过点A(2,4),把点A 的坐标代入表达式,得,解得k=8.(2)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?解:这个函数的图象位于第二、四象限,在每一个象限内,y 随x 的增大而增大.(3)画出该函数的图象;Oxy解:如图所示:(4)点 B(1,8),C(3,5)是否在该函数的图象上?因为点B 的坐标满足该解析式,而点C 的坐标不满足该解析式,所以点B 在该函数的图象上,点C 不在该函数的图象上.解:该反比例函数的解析式为.xyOBA5.如图,直线y=ax+b 与双曲线交于两点 A(1,2),B(m,4)两
24、点,(1)求直线与双曲线的解析式;所以一次函数的解析式为y=4x2.把A,B两点坐标代入一次函数解析式中,得到a=4,b=2.解:把 B(1,2)代入双曲线解析式中,得k=2,故其解析式为.当y=4时,m=.(2)求不等式ax+b的解集.xyOBA解:根据图象可知,若ax+b,则x1或x0.6.如图,反比例函数与一次函数y=x+2 的图象交于A,B 两点.(1)求A,B 两点的坐标;AyOBx解:y=x+2,解得x=4,y=2所以A(2,4),B(4,2).或x=2,y=4.作ACx轴于C,BDx轴于D,则AC=4,BD=2.(2)求AOB的面积.解:一次函数与x轴的交点为M(2,0),OM=
25、2.OAyBxMCDSOMB=OMBD2=222=2,SOMA=OMAC2=242=4,SAOB=SOMB+SOMA=2+4=6.课堂小结课堂小结面积问题面积不变性与一次函数的综合判断反比例函数和一次函数在同一直角坐标系中的图象,要对系数进行分类讨论,并注意b 的正负反比例函数的图象是一个以原点为对称中反比例函数的图象是一个以原点为对称中心的心的中心对称图形,其与正比例函数的交点关于原点中心对称反比例函数图象和性质的综合运用26.2 实际问题与反比例函数第二十六章 反比例函数导入新课讲授新课当堂练习课堂小结第1课时 实际问题中的反比例函数学习目标1.体会数学与现实生活的紧密联系,增强应用意识,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 九年级 下册 全套 ppt 课件
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。