点拨九年级数学上(R版)第二十二章过关自测卷.docx
《点拨九年级数学上(R版)第二十二章过关自测卷.docx》由会员分享,可在线阅读,更多相关《点拨九年级数学上(R版)第二十二章过关自测卷.docx(6页珍藏版)》请在咨信网上搜索。
6 不为后退找借口,要为前进创条件!风云涌动,一切皆有可能!须知勤劳的蜜蜂没有时间去悲哀,而懒惰的人等于将自己活埋!方老师 第二十二章过关自测卷 (100分,45分钟)学号: 姓名: 得分:_________ 一、选择题(每题4分,共32分) 1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为( ) A.-2 B.2 C.15 D.-15 2.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是( ) A.y=-2x2 B.y=2x2 C.y=-x2 D.y=x2 3.〈恩施州〉把抛物线y=x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( ) A.y= (x+1)2-3 B.y= (x-1)2-3 C.y= (x+1)2+1 D.y= (x-1)2+1 4.〈常州〉二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表: x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3; (2)当-<x<2时,y<0; (3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是( ) A.3 B.2 C.1 D.0 5.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( ) A.直线x=1 B.直线x=-2 C.直线x=-1 D.直线x=-4 6.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足( ) A.1<α<β<2 B.1<α<2<β C.α<1<β<2 D.α<1且β>2 7.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是直线x=1 C.当x=1时,y的最大值为-4 D.抛物线与x轴的交点为(-1,0),(3,0) 8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是( ) A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的最小值是-4 C.-1和3是方程ax2+bx+c=0(a≠0)的两个根 D.当x<1时,y随x的增大而增大 图3 二、填空题(每题4分,共32分) 9.已知抛物线y=-x2+2,当1≤x≤5时,y的最大值是______. (图4) 10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的 另一个交点坐标是__________. 11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________. 12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系 式:h=-5(t-1)2+6,则小球距离地面的最大高度是________. (图5) 13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________ 14. 如图5,已知函数y=-与y=ax2+bx(a>0,b>0)的图象交于点P,点P的 纵坐标为1,则关于x的方程 ax2+bx+=0的解为_______. 15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长 各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2. (图6) 16.如图6,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为__________. 三、解答题(每题12分,共36分) 17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式; (2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标. 图7 18.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+k2+1. (1)k取什么值时,此抛物线与x轴有两个交点? (2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值. 19.〈广州〉已知抛物线y1=ax2+bx+c过点A(1,0),顶点为B,且抛物线不经过第三象限. (1)使用a、c表示b; (2)判断点B所在象限,并说明理由; (3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C,求当x≥1时y1的取值范围. 参考答案及点拨 一、1. C 2. C 3. B 4. B 点拨:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键. 5. C 6. D 点拨:令m=0,则函数y=(x-1)(x-2)的图象与x轴的交点 分别为(1,0),(2,0),画出函数图象(如答图1),利用数形结合即可求出 α,β的取值范围.∵m>0,∴α<1,β>2.故选D. 7. C 8. D 答图1 二、9. 点拨:∵拋物线y=-x2+2的二次项系数a=-<0,∴该抛物线开口向下;又∵常数项c=2,∴该抛物线与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,y=-x2+2中y随x的增大而减小,∴当1≤x≤5时, y最大值=-+2=. 10. (-2,0) 11. k≤4 点拨:分为两种情况:①当k-3≠0时,(k-3)x2+2x+1=0, =b2-4ac=22-4(k-3)×1=-4k+16≥0,k≤4;②当k-3=0时,y=2x+1,与x轴有交点.故k≤4. 12. 6米 13. 3 点拨:方法一:图象法,由ax2+bx+m=0得ax2+bx=-m,一元二次方程ax2+bx+m=0有实数根,得函数y=ax2+bx与函数y=-m的图象有交点,所以-m≥-3,m≤3; 方法二:因为一元二次方程ax2+bx+m=0有实数根,所以b2-4am≥0,由y=ax2+bx的图象可得顶点纵坐标, =-3,b2=12a,所以12a-4am≥0,解得m≤3. 14. x=-3 15. 12.5 点拨:设一段铁丝的长度为x cm,则另一段长度为(20-x) cm,S=x2+(20-x)(20-x)=(x-10)2+12.5, ∴当x=10 时,S最小为12.5 cm2. 16. 点拨:(1)平移后抛物线的表达式与原来的抛物线的表达式中的a相同,可以通过待定系数法求抛物线的表达式;(2)不规则图形的面积要通过割补、拼接转化为规则图形的面积,这是解本题的关键. 三、17. 解:(1)∵二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3),∴解得 ∴二次函数的解析式为y=x2+2x-3; (2)∵当y=0时,x2+2x-3=0,解得:x1=-3,x2=1,∴A(1,0),B(-3,0), ∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB·|n|=10,解得:n=±5, 当n=5时,m2+2m-3=5,解得:m=-4或2,∴P点坐标为(-4,5)或(2,5); 当n=-5时,m2+2m-3=-5,方程无解,故P点坐标为(-4,5)或(2,5). 18. 解:(1)∵抛物线y=x2-(k+2)x+k2+1与x轴有两个交点, 若令y=0,即x2-(k+2)x+k2+1=0, 则有=-(k+2)2-4×1×(k2+1)>0, k2+4k+4-k2-4>0,4k>0,∴k>0, 即k>0时,此抛物线与x轴有两个交点. (2)∵抛物线y=x2-(k+2)x+k2+1与x轴交于A(x1,0)、B(x2,0)两点, ∴x1,2=,∵点A在点B左侧,即x1<x2,又∵k>0, ∴x1=,x2=>0,∴. ∵x1+=3,∴x1+x2=3,即+ =3,即k=1. 19. 解:(1)把点A(1,0)的坐标代入函数解析式即可得到b=-a-c. (2)若a<0,则抛物线开口向下,抛物线必过第三象限,所以a<0不成立. 当a>0时,抛物线开口向上,B在第四象限.理由如下:由题意,ax2+bx+c=0可变形为ax2-(a+c)x+c=0, 解得x1=1,x2=,a≠c, 所以抛物线与x轴有两个交点.又因为抛物线不经过第三象限,所以a>0,且顶点在第四象限; (3)由(2)知抛物线与x轴两个交点为A(1,0)与(,0). ∵直线y2=2x+m与该抛物线交于点B、点C (,b+8),∴点C就是抛物线与x轴的一个交点,即b+8=0,b=-8,此时-a-c=-8,y1=ax2-8x+c,抛物线顶点B的坐标为(,). 把B、C两点坐标代入直线解析式y2=2x+m,得ac+2c=24. 又a+c=8,解得a=c=4(与a≠c矛盾,舍去)或a=2,c=6. ∴y1=2x2-8x+6,B(2,-2). 画出上述二次函数的图象(如答图2),观察图象知,当x≥1时,y1的最小值为顶点纵坐标-2,且无最大值. ∴当x≥1时,y1的取值范围是y1≥-2. 答图2 点拨:二次函数的问题通常都是求解析式、求对称轴、求顶点坐标、求最值以及与其他知识的综合等,本题基本上综合了上述各种问题,解题的方法就是牢牢抓住二次函数的对称轴的求法,顶点坐标的求法,以及最值的求法.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 点拨 九年级 数学 第二十二 过关 自测
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文