初中数学中的基本数学思想方法.doc
《初中数学中的基本数学思想方法.doc》由会员分享,可在线阅读,更多相关《初中数学中的基本数学思想方法.doc(6页珍藏版)》请在咨信网上搜索。
初中数学中的基本数学思想方法 初中数学中的基本数学思想方法 学习主题 具体要求 典型例题 数学思想 (1)用字母表示数 会用字母表示数,进行式的运算和讨论一些数学问题。如会列方程解应用题,会用换元法,利用整体思想达到化简解题过程或解决问题的目的等。用字母表示数的思想是数学转化思想的具体体现。 1. 一件工作,甲做a天能完成,乙做b天能完成,现在甲先做了c天(c﹤a),余下的工作由乙继续完成,乙需做几天可以完成全部工作? 2.已知x=求的值。 (2)数形结合法 能运用代数、三角比知识通过数量关系的讨论去处理几何图形的问题;能运用几何、三角比知识通过对图形性质的研究去解决数量关系的问题。 能将抽象的数学语言与直观的图形符号结合起来,把抽象思维与形象思维结合起来;会用代数的方法去研究几何问题,会根据图形的性质及几何知识去处理代数问题。 1、已知二次函数的图象如图所示,则 0 2、如果关于x的方程 有且只有一个大于1的实数根,求m的取值范围。 3.二次函数如图(1)试确定c的符号及a、b、的符号 (2)试确定a+b+c、a-b+c的 符号 (3)函数思想 函数所揭示的是两个变量之间的对应关系,通俗的讲就是一个量的变化引起了另一个量的变化。在数学中总是设法将这种对应关系用解析式表示出来,这样就能充分运用函数的知识、方法来解决有关的问题。 1.把一块边长为20cm的正方形铁皮,四角各截去边长为xcm的小正方形,再将它折成一个无盖盒子。求这个盒子的容积V关于自变量x的函数解析式,并说明x的取值范围。 2.如图在RtΔABC∠BAC=90º,AB=AC=2,点D在BC上运动(不能到达B、C),过D作∠ADE= 45º,DE交AC于E。设BD=x,AE=y,求y关于x的函数关系式,并写出自变量取值范围。问当ΔADE为等腰三角形时,求AE的长。 (4)方程思想 学会分析问题中的数量关系,寻找已知量与未知量之间的相等关系. 学会通过适当设元,列出方程或方程组,从而解决问题的一种思维方式. 1. 牧场的青草,每天都生长一样快,牧场的全部青草可以供给10头牛吃20天,供给15头牛吃10天,那么供给25头牛可以吃几天? 2. 四边形ABCD对角线相交于O点,且△ABC、△BCD、△CDA、△DAB的面积分别为5、9、10、6,求△OAB、△OBC、△OCD及△ODA的面积. A B O D C (5)分类讨论思想 当面临的问题不宜用一种方法处理或同一种形式叙述时,就把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把这几类的结论汇总,得出问题的答案,这种解决问题的思想方法就是分类讨论的思想方法。 分类讨论的思想方法的实质是把问题“分而治之,各个击破”。其一般规则及步骤是:(1)确定同一分类标准;(2)恰当地对全体对象进行分类,按照标准对分类做到“既不重复又不遗漏”;(3)逐类讨论,按一定的层次讨论,逐级进行;(4)综合概括小节,归纳得出结论。 1.解关于x的方程 2.已知关于x的方程x2-(k+2)x+2k=0。 (1) 求证:无论k取何实数值,方程总有实数根; (2) 若等腰△ABC的一边长a=1,另两边长b, c恰好是这个方程的两个根,求△ABC的周长。 3.已知AB为⊙O的直径,D为直径AB上一动点(D不与点A, B重合),过D作CD⊥AB交⊙O于C,过C作⊙O的切线PC,交⊙O的切线AM于P,连PB交CD于E。 (1) 请根据D点的不同位置画出符合题意的图形; (2) 猜想CE与DE的数量关系,并就D点的某一位置证明你的结论; (3) 如果⊙O的半径为1,设点D与圆心O的距离为m,试求PC的长(可用m的代数式表示)。 (6)化归思想 化归思想方法是处理数学问题的指导思想和一种基本策略。化归思想就是把未知问题化归为已知问题。把复杂问题化归为简单问题,把非常规问题化归为常规问题。从而使很多问题得到解决的思想。结合解题进行化归思想方法的训练的做法:1、化繁为简;2、化高维为低维;3、化抽象为具体;4、化非规范性问题为规范性问题;5、化数为形;6、化实际问题为数学问题;7、化综合为单一;8、化一般为特殊 1.解方程: 2.已知在平面直角坐标系内,O为坐标原点,A、B是x轴正半袖上的两点,点A在点B的左侧,如图。二次函数的图象经过点A、B,与y轴相交于点C。 (1)a、c的符号之间有何关系? (2)如果线段OC的长度是线段OA、OB长度的比例中项,试证a、c互为倒数; (3)在(2)的条件下,如果b=-4,AB=求a、c的值。 (7)数学模型思想 所谓数学模型,是指用数学语言把实际问题概括地表述出来的一种数学结构。数学模型是对客观事物的空间形式和数量关系的一种反映。它可以是方程、函数或其他数学式子,也可以是一个几何基本图形。利用数学模型解决问题的一般数学方法就是数学模型方法。它的基本步骤如下图所示: 数学抽象 数学模型 实际问题 数学抽象 演算 推理 数学模型的解 实际问题的解 演 y 设计一条隧道,要使高4米,宽4米的巨型载重车辆能单向通过,隧道上的纵断面是如图抛物线状的拱,拱宽是高的4倍,求拱宽可以取得的最小整数值。(单位:米;≈2.236) O C F x x B E D A B (8)分解组合思想 能把在内容和形式上,和教材上的公式、定理所需要具备的条件不完全一样的数学问题,通过对问题的分解、拆割,或者合成、拼补等手段,将问题转化为符合公式、定理所要求的形式,并运用公式、定理来加以解决。 1、因式分解: ; 2、将两块三角板如图放置,其中 求重叠部分的面积。 (9)图形运动思想 初中图形运动包含平移、翻折和旋转,能通过实验、操作、观察和想象掌握运动的本质,在图形的运动中找到不变量,然后解决问题。 把一张边长为2的正方形纸片ABCD折叠,使B落在AD上(不和A、B重合),MN为折痕,设=a。求:(1)折起部分面积;(2)折痕MN的长。(用a的代数式表示) 数学方法 (1)待定系数法常用解题方法和技巧 (1)待定系数法 熟练掌握待定系数法的基本思想和步骤,会求解一些需要确定系数的问题,尤其是确定函数解析式,或者会利用系数证明一些问题。 1.已知二次函数的图像顶点坐标为(2,5)它在y轴上的截距是-7,求这个二次函数。 2.已知抛物线y=-(a+b)x+,a、b、c分别是⊿ABC中∠A、∠B、∠C的对边。 (1)求证:该抛物线与x轴必有两个交点; (2)设抛物线与x轴的两个交点为P、Q,顶点为R,∠PQR=α,tgα= ,⊿ABC的周长为10,求抛物线的解析式; (3)设直线y=ax-bc与抛物线交于点E、F,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,⊿MNE与⊿MNF的面积之比为5:1,试判断⊿ABC的形状,并证明你的结论。 (2)配方法 学会通过凑、配等手段得到完全平方、完全立方等形式,再利用完全平方项是非负数等性质,达到增加题目的条件等目的。主要用在多元代数式求值,无理式的证明和化简以及求解方程。 1. 若实数x、y、z满足 求x、y、z的值。 2、已知关于x的方程 有实根。求a、b的值。 (3)换元法 会用新的未知数去替换原条件中的旧未知数或数字或代数式,使较为复杂的多项式结构简化,以达到简化解题过程的目的,是体现数学转化思想的具体体现。 (4)判别式法 会用判别式去处理一元二次方程、二次函数、二次三项式等方面问题 把二次三项式、一元二次方程、分式方程、无理方程、二次函数求最值等问题,利用一元二次方程的判别式来进行求解。 1.不解方程,判别下列方程的根的情况: (1)(2)(3) 2.2.已知:二次函数,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点; (2)设这个二次函数的图象与x轴交于点 A、B,且的倒数和为,求这个二次函数的解析式。 6- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 中的 基本 思想 方法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文