九年级数学-圆-单元测试题(含答案).doc
《九年级数学-圆-单元测试题(含答案).doc》由会员分享,可在线阅读,更多相关《九年级数学-圆-单元测试题(含答案).doc(6页珍藏版)》请在咨信网上搜索。
第三章《圆》测试题 一、选择题(每题3分,共24分) 1.P为⊙O内与O不重合的一点,则下列说法正确的是( ) A.点P到⊙O上任一点的距离都小于⊙O的半径 B.⊙O上有两点到点P的距离等于⊙O的半径 C.⊙O上有两点到点P的距离最小 D.⊙O上有两点到点P的距离最大 2.若⊙A的半径为5,点A的坐标为(3,4),点P的坐标为(5,8),则点P的位置为( ) A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不确定 3.半径为R的圆中,垂直平分半径的弦长等于( ) A.R B.R C.R D.2R 4.已知:如图,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O的半径为( ) A.4cm B.5cm C.4cm D.2cm 5.下列说法正确的是( ) A.顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角 C.圆心角是圆周角的2倍 D.圆周角度数等于它所对圆心角度数的一半 6.下列说法错误的是( ) A.等弧所对圆周角相等 B.同弧所对圆周角相等 C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等 7.⊙O内最长弦长为m,直线ι与⊙O相离,设点O到ι的距离为d,则d与m的关系是( ) A.d=m B.d>m C.d> D.d< 8.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为( ) A.相交 B.相切 C.相离 D.不能确定 二、填空题(每题3分,共24分) 9.如图,在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM为中线,以C为圆心,cm为半径作圆,则A、B、C、M四点在圆外的有 ,在圆上的有 ,在圆内的有 . 10.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径 是 cm. 11.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= . 12.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是 ,最长的弦长是 . 13.如图,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= . 14.⊙O中,若弦AB长2cm,弦心距为cm,则此弦所对的圆周角等于 . 15.⊙O的半径为6,⊙O的一条弦AB为6,以3为半径的同心圆与直线AB的位置关系是 . 16.已知⊙O1和⊙O2外切,半径分别为1 cm和3 cm,那么半径为5 cm与⊙O1、⊙O2都相切的圆一共可以作出_____个. 三、解答题(40分) 17(6分).如图:由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动,距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响? 18(8分). ⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围. 19(10分).如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm. (1)求证:AC⊥OD; (2)求OD的长; (3)若2sinA-1=0,求⊙O的直径. 20(8分). 东海某小岛上有一灯塔A,已知A塔附近方圆25海里范围内有暗礁,我110舰在O点处测得A塔在其北偏西60°方向,向正西方向航行20海里到达B处,测得A在其西北方向.如果该舰继续航行,是否有触礁的危险?请说明理由.(提示=1.414,=1.732) 21(8分). 设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系. 参考答案: 一、1.B ( 提示:点P到圆心的距离小于半径,到点P的距离等于⊙O的半径的点都在以P为圆心,以⊙O的半径为半径的圆上.⊙O和⊙P有两个公共点,⊙O上到点P距离最小的点,只有一个;到点P距离最大的点也只有一个). 2.A (提示:本题两种方法,既可以画图,也可以计算AP的长新 课 标第一 网x kb ∵AP===<5,所以点P在圆内 3.C 提示:利用垂径定理和勾股定理求得. 4.B 解:连接OA,设OA=r,则OP=(r-2)cm. 在Rt△AOP中,OA2=OP2+AP2,r2=42+(r-2)2.解得r=5. 5.D 提示:本题考查圆周角的定义. 6.D 提示:等弦所对的圆周角相等或互补. 7.C 提示:最长弦即为直径,所以⊙O的半径为,故d>. 8.B 提示:O到四边的距离都相等. 二、 9.点B;点M;点A、C 点拨:AB=2cm,CM=cm. 10.r==6.5或r==2.5 提示:当点在圆外时,r=2.5;当点在圆内时,r=6.5. 11.10cm 解:连接OC,在Rt△OCE中,OC===5, ∴AB=2OC=10(cm). 12.6;10 解:如答图,过P作CD⊥OP交⊙O于C、D两点,设直线OP交⊙O与A、B两点. 在Rt△OPC中,CP===3, ∴CD=2CP=6,AB=2OC=10. 提示:直径AB为过P点的最长弦,而过P点与OP垂直的弦CD为最短弦. 13.30°;70° 提示:利用△ABC内角和定理求得∠C=70°,最后根据同弧所对的圆周角相等得∠AMB=∠ACB=70°,∠CBM=∠CAM=30°. 14.45°或135° 提示:一条弦所对的圆周角相等或互补(两个). 15.相切(提示:过点O作OC⊥AB于C,则AC=BC=AB=3,∴OC===3.∴以3为半径的同心圆与AB相切. 注:数形转化,即d=R推出相切.) 16. 6个新课标第一网 三、 17. 提示:求出A市距沙尘暴中心的最近距离与300km比较可得答案,本题实际考查与圆的位置关系和解直角三角形. 解:过A作AC⊥BD于C. 由题意,得AB=400km,∠DBA=45°.在Rt△ACB中, ∵sin∠ABC=,∴AC=AB·sin∠ABC=400×=200≈282.8(km). ∵200<300,∴A市将受到沙尘暴的影响. 18.提示:求出OP的长最小值和最大值即得范围,本题考查垂径定理及勾股定理. 解:如图,作OM⊥AB于M,连接OB,则BM=AB=×8=4. 在Rt△OMB中,OM===3. 当P与M重合时,OP为最短;当P与A(或B)重合时,OP为最长.所以OP的取值范围是3≤OP≤5. 注:该题创新之处在于把线段OP看作是一个变量,在动态中确定OP的最大值和最小值.事实上只需作OM⊥AB,求得OM即可. 19.解:(1)∵AB是⊙O的直径,∴∠C=90°. ∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD. (2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线. ∴OD=BC=×4=2(cm). (3)∵2sinA-1=0,∴sinA=.∴∠A=30°.在Rt△ABC中,∠A=30°,∴BC=AB.∴AB=2BC=8(cm).即⊙O的直径是8cm. 20.提示:从几何角度看,实际上是讨论一下直线OB与半径为25的⊙A的位置关系.相切和相交都有触礁危险,只有相离才安全,为此只须计算A点到直线OB的距离与25比较后即得答案.本题仍是考查直线与圆的位置关系. 解:该舰继续向西航行,无触礁危险.理由是: 如图,作AC⊥OB于C,则AC=BC·tan45°=BC. 在Rt△ACO中,OC=AC·cot30°=AC. ∵OC-BC=OB,∴AC-AC=20. 解得AC=27.32(海里). ∵AC=27.32>25(半径),∴直线OB与⊙A相离. ∴该舰向西航行无触礁危险. 点拨:将实际问题转化为数学模型,再利用数学知识来解决问题. 21.提示:据题意知,应首先求出判别式△,然后讨论d与R的关系,从而确定ι与⊙O的位置关系. 解:△=(-2)2-4R=4d-4R,∴当△>0,即4d-4R>0,得d>R时,ι与⊙O相离; 当△=0,即4d-4R=0,得d=R时,ι与⊙O相切; 当△>0,即4d-4R<0,得d<R时,ι与⊙O相交. 注:(1)形数的等阶转换是确定直线与圆位置关系的重要方法;(2)一元二次方程根的情况和直线与圆的位置关系的综合是一个创新.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 单元测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文