高三数学应用题专题复习.doc
《高三数学应用题专题复习.doc》由会员分享,可在线阅读,更多相关《高三数学应用题专题复习.doc(7页珍藏版)》请在咨信网上搜索。
高三数学应用题专题复习 一、应用题解题步骤 (1)读题:阅读理解题目的文字表达,分清条件和结论,理清数量关系,因果关系; (2)建模:将文字内容转化为数学语言,选择合理的数学模型,利用相关的数学知识转化题目内容; (3)解题:利用相关的数学理论,求解所建数学模型的合理解,注意实际问题对数学模型的条件限制; (4)答题:将通过数学模型求出的答案转化为实际问题的结论。 二、应用题常建数学模型 (1)优化问题:实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决; (2)预测问题:经济计划、市场预测这类问题通常设计成“数列模型”来解决; (3)最(极)值问题:工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值; (4)等量关系问题:建立“方程模型”解决; (5)测量问题:可设计成“图形模型”利用几何知识解决。 三、常见题型回顾 1.通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知: (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中? (3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目? 2.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量y(件)与销售单价x(元/件)之间近似于如图所示的一次函数y=kx+b的关系. (1)根据图象,求一次函数y=kx+b的解析式; (2)设公司获得毛利润(毛利润=销售总价-成本总价)为S元. ① 试用销售单价x表示毛利润S. ② 试问销售单价定为多少时,此公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少? 3.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件。为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表: (十万元) 0 1 2 … y 1 1.5 1.8 … (1)求y与之间的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费(十万元)的函数关系式; (3)如果投入的年广告费为10 ~ 30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大? 4.为了在如图所示的直河道旁建造一个面积为5000m2的矩形堆物场,需砌三面砖墙BC、CD、DE,出于安全原因,沿着河道两边需向外各砌10m长的防护砖墙AB、EF,若当BC的长为xm时,所砌砖墙的总长度为ym,且在计算时,不计砖墙的厚度,求 (1)y关于x的函数解析式y=f(x); (2)若BC的长不得超过40m,则当BC为何值时,y有最 小值,并求出这个最小值. 5.已知舰A在舰B的正东,距离6公里,舰C在舰B的北偏西30°,距离4公里,它们准备围找海洋动物,某时刻舰A发现动物信号,4秒后,舰B,C同时发现这种信号,A于是发射麻醉炮弹,设舰与动物都是静止的,动物信号的传播速度为1公里/1秒,求舰A炮击的方位角。 6.某观测站C在城A的南20˚西的方向上,由A城出发有一条公路,走向是南40˚东,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城? 7.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 8.某县与沙漠化进行长期的斗争. 全县面积为 p, 2002 年底绿化率达 ,从 2003 年开始,每年绿化原有沙漠面积的 ,但与此同时,原有绿化面积的 被沙化. 设2002 年底的绿化面积为 a1,经过 n 年后的绿化面积为 an+1 . (I) 求2003年底的绿化面积 (II ) 经过多少年后,绿化率达? 9.为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下: 贷款期(年数) 公积金贷款月利率(‰) 商业性贷款月利率(‰) …… 11 12 13 14 15 …… …… 4.365 4.455 4.545 4.635 4.725 …… …… 5.025 5.025 5.025 5.025 5.025 …… 汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问: (1)汪先生家每月应还款多少元? (2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少? (参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651) 参考答案 1.解:(1)当,是增函数,且;,是减函数,且.所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟. (2),故讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中. 当时,;当, (3)令,则学生注意力在180以上所持续的时间28.57-4=24.57>24,所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题. 2.分析:(1)本题把一次函数、二次函数及其有关计算问题赋予实际意义,把市场经济引进初中数学.观察图象可知,直线y=kx+b经过(600,400)、(700,300)两点,利用待定系数法即可求出其解析式;(2)根据公式“毛利润=销售总价-成本总价”,得S=xy-500y. (2)本题的解答要实现由一次函数向二次函数的转化,即要灵活运用一次函数和二次函数的有关知识,并要考虑题设中对单价的限制,把求得的值代入检验,看是否符合要求. 解:(1)把(600,400),(700,300)两点的坐标分别代入y=kx+b,得 解得 ∴ y=-x+1000,其中x的取值范围是500≤x≤800. (2)① S=xy-500y =x(-x+1000)-500(-x+1000), 即 S=-x2+1500x-500000(500≤x≤800). ② S=-x2+1500x-500000=-(x-750)2+62500. 当x=750时,S最大值=62500. 此时y=-x+1000=-750+1000=250(件). 故当销售单价定为750件时,此公司获得最大毛利润62500元;此时的销售量是250件. 3.解:(1)设二次函数的解析式为y=ax2+bx+c. 由关系表,得 解得 ∴ 函数的解析式为y=-x2+x+1. (2)根据题意,得 (3) 故当年广告费为10 ~ 25万元之间,公司获得的年利润随广告费的增大而增大 4.解:(1) (2)令得 因此在(0,40]内递减,故y的最小值为f(40)=225m, x=40m. 5.分析:求方位角应在水平面内求,所以应建立直角坐标系。 解:为确定海洋动物的位置,首先的直线BA为x轴,线段BA的中垂线为y轴建立直角坐标系(如图),据题设,得B(-3,0), A(3,0), C(-5, 2)且动物P(x,y)在BC的中垂线l上, ∵BC中点M的坐标为(-4,), kBC=-. ∴ l的方程为y-=(x+4)即:y=(x+7).................① 又∵ |PB|-|PA|=4(公里) ∴ P又在以B,A为焦点的双曲线右支上。 双曲线方程为=1 (x≥2)...............② 由①②消去y得 11x2-56x-256=0,解的x1=-(舍去), x2=8。 ∴ P点坐标为(8,5), 于是tg∠xAP=kAP==, ∴ ∠xAP=60°, 故舰A炮击的方位角为北偏东30°。 6.解:根据题意得图02,其中BC=31千米,BD=20千米,CD=21千米, ∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB中,由余弦定理得: , . . 在△ACD中,由正弦定理得: . 此人还得走15千米到达A城. 说明:运用解三角形的知识解决实际问题时,关键是把题设条件转化为三角形中的已知元素,然后解三角形求之. 7.解:设投资人分别用x万元、y万元投资甲、乙两个项目. 由题意知 目标函数z=x+0.5y. 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域. 作直线,并作平行于直线的一组直线 与可行域相交,其中有一条直线经过可行域上的M点,且 与直线的距离最大,这里M点是直线 和的交点. 解方程组 得x=4,y=6 此时(万元). 当x=4,y=6时z取得最大值. 答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大. 说明:本题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力。 8.解:(I ) 已知a1 = p,a2 = a1 (1-)+( p-a1)=a1 +p =p, ∴ 2003年底的绿化面积为p; (II ) an+1 = an (1-)+( p-an)= an +p , (n Î N*) ∴ (an+1-p)= (an-p) ∴(an+1-p)= (a1-p) ( )n ∴ an+1 = p-p () n ∴ p-p ( ) n >p Û >( ) n Û n≥5. ∴ 五年后绿化率达 9. 解 设月利率为r,每月还款数为a元,总贷款数为A元,还款期限为n月 第1月末欠款数 A(1+r)-a 第2月末欠款数 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a 第3月末欠款数 [A(1+r)2-a (1+r)-a](1+r)-a=A(1+r)3-a (1+r)2-a(1+r)-a 第n月末欠款数 得: 对于12年期的10万元贷款,n=144,r=4.455‰ ∴ 对于15年期的15万元贷款,n=180,r=5.025‰ ∴ 由此可知,汪先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 应用题 专题 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文