深度学习的常用模型和方法PPT学习课件.ppt
《深度学习的常用模型和方法PPT学习课件.ppt》由会员分享,可在线阅读,更多相关《深度学习的常用模型和方法PPT学习课件.ppt(19页珍藏版)》请在咨信网上搜索。
深度学习的常用模型和方法2016年9月18日1 深度学习的背景1目录目录 深度学习常用模型和方法2 总结与展望3 自动编码器1 稀疏编码2 卷积神经网络3 RNN与LSTM42 深度学习的背景1 实际生活中,人们为了解决一个问题,如对象的分类(文档、图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象。如文本的处理中,常常用词集合来表示一个文档,或把文档表示在向量空间中(称为VSM模型),然后才能提出不同的分类算法来进行分类;又如在图像处理中,我们可以用像素集合来表示一个图像,后来人们提出了新的特征表示,如SIFT,这种特征在很多图像处理的应用中表现非常良好,特征选取得好坏对最终结果的影响非常巨大。因此,选取什么特征对于解决一个实际问题非常的重要。然而,手工地选取特征是一件非常费力、启发式的方法,能不能选取好很大程度上靠经验和运气。自动地学习特征的方法,统称为Deep Learning。3 AutoEncoder自动编码器2.1 深度学习中最简单的一种方法是利用人工神经网络的特点。如果给定一个神经网络,我们假设其输入和输出相同,然后调整其每层参数,得到每一层的权重,自然,就得到了输入的几种不同表示,这些表示就是特征(feature)。自动编码器是一种尽可能复现输入信号的神经网络。其大致过程如下:1,给定无标签数据,用非监督学习学习特征4 AutoEncoder自动编码器2.1 此时的误差可由重构后与原输入相比得到。经过最小化重构误差之后,可以认为code此时就是input 的一种良好的表达。5 AutoEncoder自动编码器2.1 2,通过编码器产生特征,逐层训练 将第一层输出的code作为第二层的输入信号,同样最小化重构误差,就得到了第二层的参数和第二层输出的code。其他层用同样的方法炮制,每一层均能得到输入的一种表达,直到产生到需要的层数。6 AutoEncoder自动编码器2.1 3,有监督的微调 最后,为了可以实现分类,一般可以在AutoEncoder的最顶层添加一个分类器,然后通过标准的多层神经网络的监督训练方法去训练。在这里,可以通过有标签样本仅调整分类器,也可以对整个系统进行微调(数据多)。7 AutoEncoder自动编码器2.1 在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还要好。两个变体稀疏自动编码器降噪自动编码器 稀疏自动编码器:限制每次得到的表达code尽量稀疏。降噪自动编码器:训练数据加入噪声,迫使编码器更具有鲁棒性。8 Sparse Coding稀疏编码2.2 稀疏编码是一种无监督学习方法,它用来寻找一组“超完备”基向量来更有效地表示样本数据。其目的是将输入的样本集X分解为多个基元的线性组合,然后这些基前面的系数表示的是输入样本的特征。O=a1*1+a2*2+.+an*n,i是基,ai是系数。那么可以得出一个优化问题:MIN|I O|,其中,I 为输入,O 为输出 通过求解这个最优化式子,可以求得i和ai,也就能得出输入的特征表示。如果我们加上稀疏规则限制,得到:MIN|I O|+(|a1|+|a2|+|ai|)这种方法就是稀疏编码。9 Sparse Coding稀疏编码2.2 稀疏编码分为两个部分:(1)Training阶段:目标:给定一系列的样本图片x1,x2,,我们需要学习得到一组基1,2,。训练过程是一个重复迭代的过程,不断交替更改a和使得下面这个目标函数最小。(2)Coding阶段:给定一个新的图片x,求a矩阵的值,使得上面的目标函数取得最小值。10 Sparse Coding稀疏编码2.211 卷积神经网络(CNN)2.3卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的,另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。12 卷积神经网络(CNN)2.3卷积神经网络的结构与特点:BP神经网络13 卷积神经网络(CNN)2.3LeNet-5文字识别系统14 循环神经网络(RNN)与LSTM2.4人类并不是每时每刻都从一片空白的大脑开始他们的思考,人总是基于自己已经拥有的对先前词的理解来推断当前词的真实含义。传统的神经网络没有考虑到时间因素,也就是其并不能记忆之前存储的内容。而RNN解决了这个问题,RNN是包含循环的网络,允许信息的持久化。循环神经网络的基本结构如下所示:15 循环神经网络(RNN)与LSTM2.4RNN被广泛的应用在语音识别、语言建模、翻译等方面。而这些应用的关键就是LSTM的使用。长短时记忆网络(LSTM)是一种特殊的RNN模型,其特点是可以学习长期依赖的信息。LSTM可以自动记忆长期的信息而不需要特意花费很大的代价。标准RNN结构16 循环神经网络(RNN)与LSTM2.4LSTM的结构根据上个输出和当前的输入决定是否抛弃之前的状态内容17 循环神经网络(RNN)与LSTM2.4根据上个输出和当前的输入决定更新哪些属性以及新属性的内容执行之前的决定,更新当前的状态根据上个输出和当前的状态决定现在输出什么18The endThank you!请各位老师批评指正!请各位老师批评指正!19- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深度 学习 常用 模型 方法 PPT 课件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文