二次函数与面积专题.doc
《二次函数与面积专题.doc》由会员分享,可在线阅读,更多相关《二次函数与面积专题.doc(17页珍藏版)》请在咨信网上搜索。
重庆市巴川中学初2019级九上数学专题训练三 ——二次函数与面积问题 班级______姓名_______等级________ 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例1、定义:如图1,抛物线y=ax2+bx+c(a≠0)与轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图2,已知抛物线C:y=ax2+bx(a≠0)与轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标. 图1 图2 练习1. 如图,已知抛物线与轴交于点A和点B,与轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点. (1)直接写出点A、B、C、D的坐标,并求出S△ABD; (2)求出直线BC的解析式; (3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标. 题型二:已知二定点,在抛物线上求一动点,使三角形面积最大 例2. 如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(-1,0),C点坐标是(-4,-3). (1)求抛物线的解析式; (2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标; (3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S△PAC=S△EAC,若存在,求出点P的坐标;若不存在,请说明理由. A B C x y O 变式:在抛物线上是否存在点P,使S△PAC=S△ABC,若存在,求出点P的坐标;若不存在,请说明理由. A B C x y O [练习]1.如图, 已知抛物线y=x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1). (1)求抛物线的解析式; (2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标; (3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由. 2.在平面直角坐标系xoy中,规定:抛物线y=a(x-h)2+k的伴随直线为y=a(x-h)+k.例如:抛物线y=2(x+1)2-3的伴随直线为y=2(x+1)-3,即y=2x-1 (1)在上面规定下,抛物线y=(x+1)2-4的顶点为 .伴随直线为 ;抛物线y=(x+1)2-4与其伴随直线的交点坐标为 和 ; (2)如图,顶点在第一象限的抛物线y=m(x-1)2-4m与其伴随直线相交于点A,B (点A在点B的右侧)与 轴交于点C,D. ①若∠CAB=90°求的值; ②如果点P(x,y)是直线BC上方抛物线的一个动点,△PBC的面积记为S,当S 取得最大值 时,求m的值. 3.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线y=0.6x2+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N,连结PC、PD,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值及P的坐标;若不存在,说明理由; (3)在(2)的条件下,在抛物线上是否存在点Q,使S△QCD=S△PCD,若存在,求出点Q的坐标,若不存在,请说明理由. 4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D. (1)求此抛物线的表达式; (2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积; (3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积. 题型三:抛物线中,以面积为条件的几何问题 例3.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式. (2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少? (3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离. 练习3:1.如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC=3,直线l是抛物线的对称轴,E是抛物线的顶点. (1)求b,c的值; (2)如图1,连BE,线段OC上的点F关于直线l的对称点F′恰好在线段BE上,求点F的坐标; (3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由. 2.如图,已知二次函数y=ax2+bx+c的图象的顶点坐标为(2,﹣9),该函数的图象与y轴交于点A(0,﹣5),与x轴交于点B,C (1)求该二次函数的解析式; (2)求点B的坐标; (3)过点A作AD∥x轴,交二次函数的图象于点D,M为二次函数图象上一点,设点M的横坐标为m,且0<m≤5,过点M作MN∥y轴,交AD于点N,连接AM,MD,设△AMD的面积为s. ①求s关于m的函数解析式; ②判断出当点M在何位置时,△AMD的面积最大,并求出最大面积. 3.二次函数y=ax2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根. (1)求出点A、点B的坐标及该二次函数表达式. (2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值. (3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN=,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由. 4.如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM⊥x轴于点M,交直线CF于点H,设点P的横坐标为m. (1)求抛物线的解析式; (2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH的最大值及此时点P的坐标; (3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标. 第 17 页 共 17 页 初2019级数学专题训练三- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 面积 专题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文