厦门市七年级下册末数学试卷及答案.doc
《厦门市七年级下册末数学试卷及答案.doc》由会员分享,可在线阅读,更多相关《厦门市七年级下册末数学试卷及答案.doc(42页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2). (1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论. 2.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,. (1)= ; (2)如图2,点C、D是、角平分线上的两点,且,求 的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值. 3.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 4.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且. (1)求、的值; (2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数; (3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行? 5.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2. (1)求证:AB//CD; (2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论; (3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数. 6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 7.阅读材料:求1+2+22+23+24+…+22017的值. 解:设S=1+2+22+23+24+…+22017, 将等式两边同时乘以2得: 2S=2+22+23+24+…+22017+22018 将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1 请你仿照此法计算: (1)1+2+22+23+…+29=_____; (2)1+5+52+53+54+…+5n(其中n为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29. 8.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 aⓝ,读作 “a 的圈 n次方” (初步探究) (1)直接写出计算结果:2③,(﹣)③. (深入思考) 2④ 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣)⑩. (3)猜想:有理数 a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧ 9.先阅读下面的材料,再解答后面的各题: 现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表). Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14 15 16 17 18 19 20 21 22 23 24 25 26 给出一个变换公式: 将明文转成密文,如,即变为:,即A变为S.将密文转成成明文,如,即变为:,即D变为F. (1)按上述方法将明文译为密文. (2)若按上方法将明文译成的密文为,请找出它的明文. 10.[阅读材料] ∵,即,∴,∴的整数部分为1,∴的小数部分为 [解决问题] (1)填空:的小数部分是__________; (2)已知是的整数部分,是的小数部分,求代数式的平方根为______. 11.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017. (1)P(2215)= ,P(6655)= . (2)求证:任意一个“前介数”t,P(t)一定能被9整除. (3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值. 12.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 13.如图,已知点,,. (1)求的面积; (2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标; (3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示). 14.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 15.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC; (2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由; (3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系 16.如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|=2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数. (1)﹣3,0,2.5是连动数的是 ; (2)关于x的方程2x﹣m=x+1的解满足是连动数,求m的取值范围 ; (3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围. 17.如图,在下面直角坐标系中,已知,,三点,其中,,满足关系式. (1)求,,的值; (2)如果在第二象限内有一点,请用含的式子表示四边形的面积; (3)在(2)的条件下,是否存在点,使四边形的面积与三角形的面积相等?若存在,求出点的坐标,若不存在,请说明理由. 18.在平面直角坐标系中,,满足. (1)直接写出、的值: ; ; (2)如图1,若点满足的面积等于6,求的值; (3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值. 19.(阅读感悟) 一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足①,②,求和的值. 本题的常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”. (解决问题) (1)已知二元一次方程组,则 , . (2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元? (3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,求的值. 20.判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程. 解:①×2-②×3,得,解得, 把代入方程①,得,解得. ∴原方程组的解为 21.(1)阅读下列材料并填空: 对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解 ,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白: 从而得到该方程组的解为x= ,y= . (2)仿照(1)中数表的书写格式写出解方程组的过程. 22.阅读下列材料,解答下面的问题: 我们知道方程有无数个解,但在实际生活中我们往往只需求出其 正整数解. 例:由,得:,(x、y为正整数) ∴,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为 问题: (1)请你写出方程的一组正整数解: . (2)若为自然数,则满足条件的x值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案? 23.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示: 月份 用水量(m3) 收费(元) 3 5 7.5 4 9 27 (1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式; (2)已知某户5月份的用水量为8米3,求该用户5月份的水费. 24.某公园的门票价格如下表所示: 某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生; (2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案. 25.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题: (1)求A、B两点的坐标; (2)设三角形ABC面积为,若4<≤7,求m的取值范围; (3)设,请给出,满足的数量关系式,并说明理由. 26.在平面直角坐标系中,点,,,且,,满足. (1)请用含的式子分别表示,两点的坐标; (2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围; (3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围. 27.对,定义一种新的运算,规定:(其中).已知,. (1)求、的值; (2)若,解不等式组. 28.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义: 将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“. 例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6. 根据以上定义,解决下列问题: 已知点P(3,2). (1)若点A(a,2),且d(P,A)=5,求a的值; (2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围; (3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围. 29.阅读下列材料: 我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离; 例 1.解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为. 例 2.解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此不等式的解集为或. 参考阅读材料,解答下列问题: (1)方程的解为 ; (2)解不等式:; (3)解不等式:. 30.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16. (1)求点C的坐标. (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴). (3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析. 【分析】 (1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标; (2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可. 【详解】 解:(1)∵将三角形OAB沿x轴负方向平移, ∴BC∥x轴,BC=AE=3. ∵C(-3,2),A(1,0), ∴E(-2,0),D(-3,0). 故答案为:(-2,0);(-3,0). (2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD, ∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°, ∴∠BPA=∠BPF+∠APF=x°+y°=z°, ∴z=x+y. 【点睛】 此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标. 2.(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB; (2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可; (3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n. 【详解】 解:(1)如图:过O作OP//MN, ∵MN//GHl ∴MN//OP//GH ∴∠NAO+∠POA=180°,∠POB+∠OBH=180° ∴∠NAO+∠AOB+∠OBH=360° ∵∠NAO=116°,∠OBH=144° ∴∠AOB=360°-116°-144°=100°; (2)分别延长AC、CD交GH于点E、F, ∵AC平分且, ∴, 又∵MN//GH, ∴; ∵, ∵BD平分, ∴, 又∵ ∴; ∴; (3)设FB交MN于K, ∵,则; ∴ ∵, ∴,, 在△FAK中,, ∴, ∴. 经检验:是原方程的根,且符合题意. 【点睛】 本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键. 3.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 4.(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论. 【详解】 解:(1). 又,. ,; (2)设灯转动时间为秒, 如图,作,而 ,, , , , , (3)设灯转动秒,两灯的光束互相平行. 依题意得 ①当时, 两河岸平行,所以 两光线平行,所以 所以, 即:, 解得; ②当时, 两光束平行,所以 两河岸平行,所以 所以,, 解得; ③当时,图大概如①所示 , 解得(不合题意) 综上所述,当秒或82.5秒时,两灯的光束互相平行. 【点睛】 这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键. 5.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明; (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题; 【详解】 (1)如图1中, ∵∠2=∠3,∠1=∠2, ∴∠1=∠3, ∴AB//CD. (2)结论:如图2中,∠PEQ+2∠PFQ=360°. 理由:作EH//AB. ∵AB//CD,EH//AB, ∴EH//CD, ∴∠1=∠2,∠3=∠4, ∴∠2+∠3=∠1+∠4, ∴∠PEQ=∠1+∠4, 同法可证:∠PFQ=∠BPF+∠FQD, ∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°, ∴∠1+∠4+∠EQD+∠BPE=2×180°, 即∠PEQ+2(∠FQD+∠BPF)=360°, ∴∠PEQ+2∠PFQ=360°. (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y, ∵EQ//PH, ∴∠EQC=∠PHQ=x, ∴x+10y=180°, ∵AB//CD, ∴∠BPH=∠PHQ=x, ∵PF平分∠BPE, ∴∠EPQ+∠FPQ=∠FPH+∠BPH, ∴∠FPH=y+z﹣x, ∵PQ平分∠EPH, ∴Z=y+y+z﹣x, ∴x=2y, ∴12y=180°, ∴y=15°, ∴x=30°, ∴∠PHQ=30°. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 6.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 7.(1)210-1;(2);(3)9×210+1. 【分析】 (1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值; (2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值. (3)根据题目中的信息,运用类比的数学思想可以解答本题. 【详解】 解:(1)设S=1+2+22+23+…+29, 将等式两边同时乘以2得: 2S=2+22+23+24+…+29+210, 将下式减去上式得2S-S=210-1,即S=210-1, 即1+2+22+23+…+29=210-1. 故答案为210-1; (2)设S=1+5+52+53+54+…+5n, 将等式两边同时乘以5得: 5S=5+52+53+54+55+…+5n+5n+1, 将下式减去上式得5S-S=5n+1-1,即S=, 即1+5+52+53+54+…+5n=; (3)设S=1+2×2+3×22+4×23+…+9×28+10×29, 将等式两边同时乘以2得: 2S=2+2×22+3×23+4×24+…+9×29+10×210, 将上式减去下式得-S=1+2+22+23+…+29+10×210, -S=210-1-10×210, S=9×210+1, 即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1. 【点睛】 本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律. 8.(1),-2;(2)()4,(﹣2)8;(3);(4). 【分析】 (1)分别按公式进行计算即可; (2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果; (3)结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n-1; (4)将第二问的规律代入计算,注意运算顺序. 【详解】 解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2; (2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8; (3)aⓝ=a×××…×; (4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧ =(-3)8×( )7 -(﹣)9×(-2)6 =-3-(-)3 =-3+ =. 【点睛】 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 9.(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C. 【分析】 (1) 由图表找出N,E,T对应的自然数,再根据变换公式变成密文. (2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文. 【详解】 解:(1)将明文NET转换成密文: 即N,E,T密文为M,Q,P; (2)将密文D,W,N转换成明文: 即密文D,W,N的明文为F,Y,C. 【点睛】 本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换. 10.(1);(2)±3. 【分析】 (1)由于4<7<9,可求的整数部分,进一步得出的小数部分; (2)先求出的整数部分和小数部分,再代入代数式进行计算即可. 【详解】 解:(1)∵4<7<9, ∴,即,∴,∴的整数部分为2, ∴的小数部分为; (2)∵是的整数部分,是的小数部分,9<10<16, ∴,即, ∴, ∴的整数部分为3, 的小数部分为, 即有,, ∴ 9的平方根为±3. ∴的平方根为±3. 【点睛】 本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算. 11.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36. 【分析】 (1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可; (2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除; (3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解. 【详解】 (1)解:2215是“前介数”,其对应的“中介数”是5221, ∴P(2215)=2215-5221=-3006; 6655是“前介数”,其对应的“中介数”是5665, ∴P(6655)=6655-5665=990; 故答案为:-3006,990; (2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c, ∴, 又对应的“中介数”是, ∴P(t)= , ∵a、b、c均不为0的整数, ∴为整数, ∴P(t)一定能被9整除; (3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数, ∴, ∵能被6整除, ∴能被2整除,也能被3整除, ∴为偶数,且能被3整除, 又1, ∴b只能取2,4,6,8中的其中一个数, 又对应的“中介数”是, 且该“中介数”能被2整除, ∴为偶数, 又1, ∴a只能取2,4,6,8中的其中一个数, ∴P(t)= , 要求P(t)的最大值,即要尽量的大,要尽量的小, ①的最大值为8,的最小值为2,但此时, 且14不能被3整除,不符合题意,舍去; ②的最大值为6,的最小值仍为2,但此时,能被3整除, 且P(t)=2262-2226=36; ③的最大值仍为8,的最小值为4,但此时, 且16不能被3整除,不符合题意,舍去; 其他情况,减少,增大,则P(t)减少, ∴满足条件的P(t)的最大值是P(2262)=36. 【点睛】 本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法. 12.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 13.(1)2;(2);(3)或 【分析】 (1)直接利用以为底,进行求面积; (2)的面积等于的面积,需要分三种情况进行分类讨论; (3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时. 【详解】 解:(1). (2)作如下图形,进行分类讨论: ①当点在轴正半轴上时, , ; ②当点在轴负半轴上时, , ; ③当点在轴负半轴上时, , ; 因此符合条件的点坐标有3个,分别是. (3), , , 即与点到的距离相等, , , , 由可推出, ①位于轴负半轴上时, , , , ; ②位于轴正半轴上时, , , 综上:点的坐标为或. 【点睛】 本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解. 14.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 15.(1)C(0,2),D(4,2),S四边形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)点p在线段BD上,∠O- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 厦门市 年级 下册 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文