八年级上册期末模拟数学检测试卷附答案.doc
《八年级上册期末模拟数学检测试卷附答案.doc》由会员分享,可在线阅读,更多相关《八年级上册期末模拟数学检测试卷附答案.doc(21页珍藏版)》请在咨信网上搜索。
八年级上册期末模拟数学检测试卷附答案 一、选择题 1.下列图形中是轴对称图形的是( ) A. B. C. D. 2.世界最大的单口球面射望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒数据0.00519用科学记数法表示为( ) A. B. C. D. 3.可以写为( ) A. B. C. D. 4.要使式子在实数范围内有意义,则x的取值范围是( ) A.x<2 B.x≥2 C.x≤2 D.x≠2 5.下列从左到右的变形,属于因式分解的是( ) A. B. C. D. 6.下列各式从左到右变形不正确的是( ) A. B. C. D. 7.如图,已知AB=CD,若使△ABC≌△DCB,则不能添加下列选项中的( ) A.∠ABC=∠DCB B.BO=CO C.AO=DO D.∠A=∠D 8.关于x的分式方程的解为正数,则实数m的取值范围是( ) A. B. C.且 D.且 9.如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙).若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则( ) A.12 B.13 C.24 D.25 10.如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( ) A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化 二、填空题 11.若分式的值为0,则x=______. 12.点M(3,-1)关于x轴的对称点的坐标为_________. 13.已知两个非零实数a,b满足,,则代数式的值为______. 14.如果,那么我们规定,例如:因为,所以.若,,,则________. 15.如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________. 16.如果是个完全平方式,那么的值是______. 17.如图,边长分别为、的两个正方形并排放在一起,当,时阴影部分的面积为_____. 18.如图,在长方形ABCD中,,.延长BC到点E,使,连结DE,动点P从点B出发,以每秒2个单位长度的速度沿向终点A运动.设点P的运动时间为t秒,当t的值为______________时,和全等. 三、解答题 19.因式分解: (1); (2) 20.解下列分式方程: (1)+=1; (2)﹣1=. 21.如图,,点E在线段上,点F在延长线上,,求证:. 22.已知:. (1)如图1,求证:; (2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论. 23.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同. 设每个乙商品的进价为x元. (1)每个甲商品的进价为_______元(用含x的式子表示); (2)求每个甲、乙商品的进价分别是多少? 24.先阅读下列材料,然后解答后面的问题:材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数” (1)直接写出:最小的“欢喜数”是 ,最大的“欢喜数”是 ; (2)求证:任意“欢喜数 ”一定能被11整除; (3)若“欢喜数 ”m为奇数,且十位数字比个位数字大5, 求所有符合条件的“欢喜数 ”m. 25.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 26.已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 【参考答案】 一、选择题 2.B 解析:B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形. B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形. 故选:B. 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.B 解析:B 【分析】用科学记数法表示绝对值小于1的数形如为负整数,据此解答. 【详解】解:数据0.00519用科学记数法表示为, 故选:B. 【点睛】本题考查科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键. 4.D 解析:D 【分析】根据同底数幂乘法法则,合并同类项法则依次计算判断即可. 【详解】解:A、=a10,故不符题意; B、=2a8,不不符合题意; C、=a8,故不符合题意; D、=,故符合题意; 故选:D. 【点睛】此题考查了整式的乘法公式,合并同类项法则,熟记各计算法则是解题的关键. 5.A 解析:A 【分析】根据二次根式和分式有意义的条件,即可求解. 【详解】解:由题意得2﹣x≥0且2﹣x≠0, 解得x<2, 故选:A. 【点睛】本题考查的是分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键. 6.B 解析:B 【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案. 【详解】解:A、是整式的乘法,故A不是因式分解,不符合题意; B、提取公因式分解因式,故B正确,符合题意. C、没转化成整式积的形式,故C不是因式分解,不符合题意; D、是整式的乘法,故D不是因式分解,不符合题意. 故选:B. 【点睛】本题考查了因式分解的定义,掌握因式分解就是把多项式转化成几个整式积的形式是解题关键. 7.B 解析:B 【分析】根据分式的基本性质即可求解. 【详解】解:A. ,该选项变形正确,不符合题意; B. ,该选项变形错误,符合题意; C. ,该选项变形正确,不符合题意; D. ,该选项变形正确,不符合题意; 故选:B. 【点睛】此题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键. 8.D 解析:D 【分析】根据三角形全等的判定条件对各选项进行判断即可. 【详解】解:由题意知,,, A中,根据边角边,得到,故不符合题意; B中,则由等边对等角可得,根据边角边,得到,故不符合题意; C中AO=DO,则,由等边对等角可得,根据边角边,得到,故不符合题意; D中无法证明,故符合题意; 故选D. 【点睛】本题考查了三角形全等的判定.解题的关键在于熟练掌握三角形全等的判定条件. 9.D 解析:D 【分析】先根据分式方程的解法,求出x的解,然后根据分式方程有解,且解为正数构成不等式组求解即可. 【详解】解:, 去分母得:x+m-2m=3(x-2), 解得:x=, ∵关于x的分式方程的解为正数, ∴. 即, 解得m<6且m≠2, 故选:D. 【点睛】本题考查了分式方程的解和分式方程有解的条件,用含m的式子表示分式方程中x的解,构造不等式组是解题的关键. 10.D 解析:D 【分析】根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得. 【详解】菱形的对角线互相垂直平分, 个直角三角形全等; ,, , 四边形是正方形,又正方形的面积为13, 正方形的边长为, 根据勾股定理,则, 中间空白处的四边形的面积为1, 个直角三角形的面积为, , , , . 故选D. 【点睛】本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键. 11.B 解析:B 【分析】作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题. 【详解】如图,过点E作EN⊥BM,垂足为点N, ∵∠AOB=∠ABE=∠BNE=90°, ∴∠ABO+∠BAO=∠ABO+∠NBE=90°, ∴∠BAO=∠NBE, ∵△ABE、△BFO均为等腰直角三角形, ∴AB=BE,BF=BO; 在△ABO与△BEN中, ∴△ABO≌△BEN(AAS), ∴BO=NE,BN=AO; ∵BO=BF, ∴BF=NE, 在△BPF与△NPE中, ∴△BPF≌△NPE(AAS), ∴BP=NP=BN;而BN=AO, ∴BP=AO=×8=4, 故选B. 【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答. 二、填空题 12.2021 【分析】分式值为零的条件是分子等于零且分母不等于零,据此求出x的值即可. 【详解】解:∵分式的值为0, ∴x-2021=0且x+2020≠0, 解得:x=2021. 故答案是:2021. 【点睛】此题主要考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 13.(3,1) 【分析】根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果. 【详解】解:∵两点关于x轴对称,横坐标不变,纵坐标互为相反数, ∴点M(3,−1)关于x轴的对称点的坐标是(3,1), 故答案为:(3,1). 【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数. 14.2或 【分析】利用,得出,且或,分情况讨论即可求解. 【详解】解:由题意, ①+②得:, 整理得:, ①-②得:, 整理得:, ∴ 或. 当时,, ∴; 当时,, ∴; 综上,代数式的值为2或. 故答案为:2或. 【点睛】本题考查求代数式的值、分式的运算,利用到了平方式差公式及完全平方公式,解题的关键是掌握完全平方公式及其变形、分式的运算法则,注意分类讨论,避免漏解. 15. 【分析】由新规定的运算可得,,,再将转化为后,再代入求值即可. 【详解】由于,,,根据新规定的运算可得, ,,, , 故答案为:. 【点睛】本题考查幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键. 16.6 【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解. 【详解】解:作点E关于AD的对称点F,连接CF, ∵△ABC是等边三角形,AD是BC边上的 解析:6 【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解. 【详解】解:作点E关于AD的对称点F,连接CF, ∵△ABC是等边三角形,AD是BC边上的中垂线, ∴点E关于AD的对应点为点F, ∴CF就是EP+CP的最小值. ∵△ABC是等边三角形,E是AC边的中点, ∴F是AB的中点, ∴CF=AD=6, 即EP+CP的最小值为6, 故答案为6. 【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键. 17.-2或6##6或-2 【分析】由题意直接利用完全平方公式的结构特征判断即可求出m的值. 【详解】解:∵是个完全平方式, ∴,解得:-2或6. 故答案为:-2或6. 【点睛】本题主要考查完全 解析:-2或6##6或-2 【分析】由题意直接利用完全平方公式的结构特征判断即可求出m的值. 【详解】解:∵是个完全平方式, ∴,解得:-2或6. 故答案为:-2或6. 【点睛】本题主要考查完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 18.38 【分析】阴影部分面积=两个正方形面积减去两个直角三角形面积,整理后将a+b与ab的值代入计算即可求出值. 【详解】解:根据题意得:S阴影部分=a2+b2-b2-a(a+b) =a2+b2 解析:38 【分析】阴影部分面积=两个正方形面积减去两个直角三角形面积,整理后将a+b与ab的值代入计算即可求出值. 【详解】解:根据题意得:S阴影部分=a2+b2-b2-a(a+b) =a2+b2-b2-ab-a2 =(a2+b2-ab) = [(a+b)2-3ab], 把a+b=16,ab=60代入得:S阴影部分=38. 故图中阴影部分的面积为38. 故答案为38. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 19.1或7##7或1 【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果. 【详解】解:当点P在BC上时, ∵AB=CD, ∴当△ABP≌△DCE,得到BP 解析:1或7##7或1 【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果. 【详解】解:当点P在BC上时, ∵AB=CD, ∴当△ABP≌△DCE,得到BP=CE, 由题意得:BP=2t=2, ∴t=1, 当P在AD上时, ∵AB=CD, ∴当△BAP≌△DCE,得到AP=CE, 由题意得:AP=6+6-4﹣2t=2, 解得t=7. ∴当t的值为1或7秒时.△ABP和△DCE全等. 故答案为:1或7. 【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解. 三、解答题 20.(1) (2) 【分析】(1)先提取公因式,再运用平方差公式分解因式即可; (2)先提取公因式,再运用完全平方公式分解因式即可. (1) 解: ; (2) . 【点睛 解析:(1) (2) 【分析】(1)先提取公因式,再运用平方差公式分解因式即可; (2)先提取公因式,再运用完全平方公式分解因式即可. (1) 解: ; (2) . 【点睛】本题考查因式分解——提公因式法和公式法综合,熟练掌握因式分解的方法是解题的关键. 21.(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣ 解析:(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣1),可得:1﹣2=x﹣1, 解得:x=0, 经检验:x=0是原分式方程的解, ∴原分式方程的解为:x=0. (2)∵﹣1=, ∴﹣1=, 方程两边同时乘(x+2)(x﹣2),可得:x(x+2)﹣(x+2)(x﹣2)=8, 整理得:2x﹣4=0, 解得x=2, 检验:当x=2时,(x+2)(x﹣2)=0, ∴原分式方程无解. 【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 22.证明见解析 【分析】由全等三角形的性质证明结合,证明从而可得结论. 【详解】解: , , 【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键. 解析:证明见解析 【分析】由全等三角形的性质证明结合,证明从而可得结论. 【详解】解: , , 【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键. 23.(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE 解析:(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论; (2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论. (1) 解:如图1,过F作FH∥AB, ∵AB∥CD, ∴FH∥CD, ∴∠1=∠2,∠3=∠FDC, ∵∠2=∠ABE, ∴∠1=ABE, ∵∠BFC=∠1+∠3, ∴∠BFC=∠ABE+∠FCD, ∵∠ABE=∠BFC, ∴∠AEB=∠ABE+∠DCF; (2) 解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=, ∵∠BCF=2∠ABE, ∴,即, 由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=, ∴2(∠BMC+∠E)=2()=6, ∵3∠CAB=3(∠E+∠ABE)=3()=6, ∴2(∠BMC+∠AEB)=3∠CAB. 【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质. 24.(1)x-2; (2)甲商品的进价每个8元,乙商品的进价每个10元. 【分析】(1)根据数量关系:每个甲商品的进价=每个乙商品的进价-2即可表示甲商品的进价; (2)根据等量关系用80元购进甲 解析:(1)x-2; (2)甲商品的进价每个8元,乙商品的进价每个10元. 【分析】(1)根据数量关系:每个甲商品的进价=每个乙商品的进价-2即可表示甲商品的进价; (2)根据等量关系用80元购进甲商品的数量=用100元购进乙商品的数量列分式方程求解即可. (1)解:∵每个甲商品的进价比每个乙商品的进价少2元,∴每个甲商品的进价=每个乙商品的进价-2即可表示甲商品的进价,∵设每个乙商品的进价为x元,∴每个甲商品的进价为(x-2)元,故答案为:x-2; (2)解:由每个乙商品的进价为x元,得每个甲商品的进价为(x-2)元,则, ,∴,经检验x=10是原方程的解,∴原方程的解为x=10,当x=10时,x-2=8,答:甲商品的进价每个8元,乙商品的进价每个10元. 【点睛】本题主要考查了列代数式及分式方程的应用,找出等量关系列分式方程求解是解本题的关键. 25.(1)110;990; (2)见解析 (3)561和583 【分析】(1)按照题意写出最小的“欢喜数”与最大的“欢喜数”; (2)可设“欢喜数”为,则有100a+10b+b-a=99a+11 解析:(1)110;990; (2)见解析 (3)561和583 【分析】(1)按照题意写出最小的“欢喜数”与最大的“欢喜数”; (2)可设“欢喜数”为,则有100a+10b+b-a=99a+11b=11(9a+b),再通过计算即可; (2)“欢喜数 ” 十位数字比个位数字大5, 且m为奇数,可得a=5,求出符合条件的奇数. (1) 由题意可得:最小的“欢喜数”是110,最大的“欢喜数”是990; 故答案为:110;990; (2) 由题意,可设“欢喜数”为,则有: 100a+10b+b-a=99a+11b=11(9a+b) ∵a,b是整数,∴9a+b是整数 ∴任意“欢喜数 ”一定能被11整除 (3) “欢喜数 ” 十位数字比个位数字大5, 且m为奇数 即a=5 ∴符合条件的奇数为561和583 【点睛】此题考查了利用整式乘法解决数字新定义问题的能力,关键是能结合题意利用整式乘法进行计算求解. 26.(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可 解析:(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键. 27.(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明 解析:(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图, ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 期末 模拟 数学 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文