广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc
《广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc》由会员分享,可在线阅读,更多相关《广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc(44页珍藏版)》请在咨信网上搜索。
广州市中大附中八年级上册压轴题数学模拟试卷及答案 一、压轴题 1.已知:如图1,直线,EF分别交AB,CD于E,F两点,,的平分线相交于点K. (1)求的度数; (2)如图2,,的平分线相交于点,问与的度数是否存在某种特定的等量关系?写出结论并证明; (3)在图2中作,的平分线相交于点,作,的平分线相交于点,依此类推,作,的平分线相交于点,请用含的n式子表示的度数.(直接写出答案,不必写解答过程) 2.在中,,,是的角平分线,于点. (1)如图1,连接,求证:是等边三角形; (2)如图2,点是线段上的一点(不与点重合),以为一边,在下方作,交延长线于点.求证:; (3)如图3,点是线段上的点,以为一边,在的下方作,交延长线于点.直接写出,与数量之间的关系. 3.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形, 如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE. (材料理解)(1)在图1中证明小明的发现. (深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有 .(将所有正确的序号填在横线上). (延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系. 4.如图所示,在平面直角坐标系中,已知点的坐标,过点作轴,垂足为点,过点作直线轴,点从点出发在轴上沿着轴的正方向运动. (1)当点运动到点处,过点作的垂线交直线于点,证明,并求此时点的坐标; (2)点是直线上的动点,问是否存在点,使得以为顶点的三角形和全等,若存在求点的坐标以及此时对应的点的坐标,若不存在,请说明理由. 5.如图,在等边中,线段为边上的中线.动点在直线上时,以为一边在的下方作等边,连结. (1)求的度数; (2)若点在线段上时,求证:; (3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由. 6.请按照研究问题的步骤依次完成任务. (问题背景) (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. (简单应用) (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) (问题探究) (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; (拓展延伸) (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 7.(概念认识) 如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”. (问题解决) (1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °; (2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数; (延伸推广) (3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示) 8.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由; (4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由. 9.如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称. (1)求点的坐标; (2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式; (3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长. 10.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE. 拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明) 实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标. 11.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0°<α<180°),在旋转过程中; (1)如图2,当∠α= 时,,当∠α= 时,DE⊥BC; (2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N, ①此时∠α的度数范围是 ; ②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由; ③若使得∠2≥2∠1,求∠α的度数范围. 12.如图,在中,,,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E. (1)当时, , (2)当DC等于多少时,,请说明理由; (3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由. 13.(阅读材料): (1)在中,若,由“三角形内角和为180°”得. (2)在中,若,由“三角形内角和为180°”得. (解决问题): 如图①,在平面直角坐标系中,点C是x轴负半轴上的一个动点.已知轴,交y轴于点E,连接CE,CF是∠ECO的角平分线,交AB于点F,交y轴于点D.过E点作EM平分∠CEB,交CF于点M. (1)试判断EM与CF的位置关系,并说明理由; (2)如图②,过E点作PE⊥CE,交CF于点P.求证:∠EPC=∠EDP; (3)在(2)的基础上,作EN平分∠AEP,交OC于点N,如图③.请问随着C点的运动,∠NEM的度数是否发生变化?若不变,求出其值:若变化,请说明理由. 14.已知:MN∥PQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB. (1)如图1,求证:∠C=∠MAC+∠PBC; (2)如图2,AD,BD,AE,BE分别为∠MAC,∠PBC,∠CAN,∠CBQ的角平分线,求证:∠D+∠E=180°; (3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,∠FDA=2∠FDB,FD的延长线交EA的延长线于点H,若3∠C=4∠E,猜想∠H与∠GDB的倍数关系并证明. 15.(1)发现:如图1,的内角的平分线和外角的平分线相交于点。 ①当时,则 ②当时,求的度数(用含的代数式表示)﹔ (2)应用:如图2,直线与直线垂直相交于点,点在射线上运动(点不与点重合),点在射线上运动(点不与点重合),延长至,已知的角平分线与的角平分线所在的直线相交于,在中,如果一个角是另一个角的倍,请直接写出的度数. 16.(1)如图1,和都是等边三角形,且,,三点在一条直线上,连接,相交于点,求证:. (2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、、恰交于点. ①求证:; ②如图2,在(2)的条件下,试猜想,,与存在怎样的数量关系,并说明理由. 17.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 18.完全平方公式:适当的变形,可以解决很多的数学问题. 例如:若,求的值. 解:因为 所以 所以 得. 根据上面的解题思路与方法,解决下列问题: (1)若,求的值; (2)①若,则 ; ②若则 ; (3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积. 19.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 20.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6. (1)①求证:△ADC≌△CEB;②求DE的长; (2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE于点P,过点N作QN⊥DE于点Q; ①当点N在线段CA上时,用含有t的代数式表示线段CN的长度; ②当t为何值时,点M与点N重合; ③当△PCM与△QCN全等时,则t= . 【参考答案】***试卷处理标记,请不要删除 一、压轴题 1.(1);(2),证明见解析;(3) 【解析】 【分析】 (1) 过 作KG∥AB,交 于 ,证出∥KG,得到,,根据角平分线的性质及平行线的性质得到,即可得到答案; (2)根据角平分线的性质得到,,根据求出,根据求出答案; (3)根据(2)得到规律解答即可. 【详解】 (1) 过 作KG∥AB,交 于 , ∵ , ∴∥KG, ,, ,分别为与的平分线, ,, ∵, , , ,则 ; (2) , 理由为: ,的平分线相交于点, ,, ,即 , , , , ; (3)由(2)知; 同理可得=, ∴. 【点睛】 此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答. 2.(1)证明见解析;(2)证明见解析;(3)结论:,证明见解析. 【解析】 【分析】 (1)先根据直角三角形的性质得出,再根据角平分线的性质可得,然后根据三角形的判定定理与性质可得,最后根据等边三角形的判定即可得证; (2)如图(见解析),延长ED使得,连接MF,先根据直角三角形的性质、等边三角形的判定得出是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证; (3)如图(见解析),参照题(2),先证是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证. 【详解】 (1) 是的角平分线, 在和中, 是等边三角形; (2)如图,延长ED使得,连接MF ,是的角平分线, 是等边三角形 ,即 在和中, ,即 即; (3)结论:,证明过程如下: 如图,延长BD使得,连接NH 由(2)可知, 是等边三角形 ,即 在和中, ,即 即. 【点睛】 本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键. 3.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°. 【解析】 【分析】 (1)利用等式的性质得出∠BAD=∠CAE,即可得出结论; (2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论; (3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论. 【详解】 (1)证明:∵∠BAC=∠DAE, ∴∠BAC+∠CAD=∠DAE+∠CAD, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE; (2)如图2, ∵△ABC和△ADE是等边三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE, ∴BD=CE,①正确,∠ADB=∠AEC, 记AD与CE的交点为G, ∵∠AGE=∠DGO, ∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE, ∴∠DOE=∠DAE=60°, ∴∠BOC=60°,②正确, 在OB上取一点F,使OF=OC, ∴△OCF是等边三角形, ∴CF=OC,∠OFC=∠OCF=60°=∠ACB, ∴∠BCF=∠ACO, ∵AB=AC, ∴△BCF≌△ACO(SAS), ∴∠AOC=∠BFC=180°-∠OFC=120°, ∴∠AOE=180°-∠AOC=60°,③正确, 连接AF,要使OC=OE,则有OC=CE, ∵BD=CE, ∴CF=OF=BD, ∴OF=BF+OD, ∴BF<CF, ∴∠OBC>∠BCF, ∵∠OBC+∠BCF=∠OFC=60°, ∴∠OBC>30°,而没办法判断∠OBC大于30度, 所以,④不一定正确, 即:正确的有①②③, 故答案为①②③; (3)如图3, 延长DC至P,使DP=DB, ∵∠BDC=60°, ∴△BDP是等边三角形, ∴BD=BP,∠DBP=60°, ∵∠BAC=60°=∠DBP, ∴∠ABD=∠CBP, ∵AB=CB, ∴△ABD≌△CBP(SAS), ∴∠BCP=∠A, ∵∠BCD+∠BCP=180°, ∴∠A+∠BCD=180°. 【点睛】 此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键. 4.(1)证明见解析;;(2)存在,,或,或,或,或,或,. 【解析】 【分析】 (1)通过全等三角形的判定定理ASA证得△ABP≌△PCD,由全等三角形的对应边相等证得AP=DP,DC=PB=3,易得点D的坐标; (2)设P(a,0),Q(2,b).需要分类讨论:①AB=PC,BP=CQ;②AB=CQ,BP=PC.结合两点间的距离公式列出方程组,通过解方程组求得a、b的值,得解. 【详解】 (1) 轴 在和中 , (2)设, ①, ,解得或 ,或,或,或, ②,, ,解得 ,或, 综上:,或,或,或,或,或, 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解. 5.(1)30°;(2)证明见解析;(3)是定值,. 【解析】 【分析】 (1)根据等边三角形的性质可以直接得出结论; (2)根据等边三角形的性质就可以得出,,,,由等式的性质就可以,根据就可以得出; (3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论. 【详解】 (1)是等边三角形, . 线段为边上的中线, , . (2)与都是等边三角形, ,,, , . 在和中 , ; (3)是定值,, 理由如下: ①当点在线段上时,如图1, 由(2)可知,则, 又, , 是等边三角形,线段为边上的中线 平分,即 . ②当点在线段的延长线上时,如图2, 与都是等边三角形, ,,, , , 在和中 , , , 同理可得:, . ③当点在线段的延长线上时, 与都是等边三角形, ,,, , , 在和中 , , , 同理可得: , ∵, . 综上,当动点在直线上时,是定值,. 【点睛】 此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题. 6.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【解析】 【分析】 (1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】 解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】 本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 7.(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m 【解析】 【分析】 (1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数; (2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数; (3)根据的三分线所在的直线与的三分线所在的直线交于点.分四种情况画图:情况一:如图①,当和分别是“邻三分线”、“邻三分线”时;情况二:如图②,当和分别是“邻三分线”、“邻三分线”时;情况三:如图③,当和分别是“邻三分线”、“邻三分线”时;情况四:如图④,当和分别是“邻三分线”、“邻三分线”时,再根据,,即可求出的度数. 【详解】 解:(1)如图, 当是“邻三分线”时,; 当是“邻三分线”时,; 故答案为:85或100; (2), , , 又、分别是邻三分线和邻三分线, ,, , , 在中, . (3)分4种情况进行画图计算: 情况一:如图①,当和分别是“邻三分线”、“邻三分线”时, ; 情况二:如图②,当和分别是“邻三分线”、“邻三分线”时, ; 情况三:如图③,当和分别是“邻三分线”、“邻三分线”时, ; 情况四:如图④,当和分别是“邻三分线”、“邻三分线”时, ①当时,; ②当时,. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论. 8.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析 【解析】 【分析】 (1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可; (2)同(1)方法即可; (3)利用平角的定义和三角形的内角和即可得出结论; (4)利用三角形的内角和和外角的性质即可得出结论. 【详解】 解:(1) ∵∠1+∠CDP=180°, ∴∠CDP=180°-∠1, 同理:∠CEP=180°-∠2, 根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°, ∵∠C=90°, ∴180°-∠1+α+180°-∠2+90°=360°, ∴∠1+∠2=90°+α=90°+60°=150°, 故答案为:150; (2) ∵∠1+∠CDP=180°, ∴∠CDP=180°-∠1, 同理:∠CEP=180°-∠2, 根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°, ∵∠C=90°, ∴180°-∠1+α+180°-∠2+90°=360°, ∴∠1+∠2=90°+α, 故答案为:∠1+∠2=90°+α; (3)∠1=90°+∠2+∠α. 理由如下:如图3, 设DP与BE的交点为F, ∵∠2+∠α=∠DFE,∠DFE+∠C=∠1, ∴∠1=∠C+∠2+∠α=90°+∠2+∠α. (4)∠2=90°+∠1-∠α,理由如下:如图4, 设PE与AC的交点为G, ∵∠PGD=∠EGC, ∴∠α+180°-∠1=∠C+180°-∠2, ∴∠2=90°+∠1-∠α. 故答案为∠2=90°+∠1-∠α. 【点睛】 此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题. 9.(1)C(4,0);(2);(3). 【解析】 【分析】 (1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案; (2)利用面积法可求得,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案. 【详解】 (1)∵点、关于轴对称, ∴, ∴, ∵, ∴为等边三角形, ∴, ∴, ∴点C的坐标为:; (2)连接, ∵, ∴, ∵, ∴, ∵, ∴, ∵, ∴, 即:; (3)∵点到的距离为, ∴, ∴, ∴, 延长交于点,过点作轴于点,连接、, ∵为的角平分线,为等边三角形, ∴,, ∵,, ∴, ∴, 设, 在中,, ∴, ∵, ∴, ∴, ∴, ∴, ∵,, ∴, ∵, ∴, 在中,,, ∴, ∴,, ∴, ∴. 【点睛】 本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键. 10.(1)证明见解析;(2)DE=BD+CE;(3)B(1,4) 【解析】 【分析】 (1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可; (3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答. 【详解】 (1)证明:∵BD⊥直线m,CE⊥直线m, ∴∠ADB=∠CEA=90° ∵∠BAC=90° ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90° ∴∠CAE=∠ABD ∵在△ADB和△CEA中 ∴△ADB≌△CEA(AAS) ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE 即:DE=BD+CE (2)解:数量关系:DE=BD+CE 理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD, ∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC, ∴∠ABD=∠CAE, 在△ABD和△CAE中, ∴△ABD≌△CAE(AAS) ∴AE=BD,AD=CE, ∴DE=AD+AE=BD+CE; (3)解:如图,作AE⊥x轴于E,BF⊥x轴于F, 由(1)可知,△AEC≌△CFB, ∴CF=AE=3,BF=CE=OE-OC=4, ∴OF=CF-OC=1, ∴点B的坐标为B(1,4). 【点睛】 本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键. 11.(1)10°,100°;(2)①55°<α<85°;②∠1与∠2度数的和不变,理由见解析③55°<α≤60°. 【解析】 【分析】 (1)当∠EDA=∠B=40°时,,得出30°+α=40°,即可得出结果;当时,DE⊥AB,得出50°+α+30°=180°,即可得出结果; (2)①由已知得出∠ACD=45°,∠A=50°,推出∠CDA=85°,当点C在DE边上时,α+30°=85°,解得α=55°,当点C在DF边上时,α=85°,即可得出结果; ②连接MN,由三角形内角和定理得出∠CNM+∠CMN+∠MCN=180°,则∠CNM+∠CMN=90°,由三角形内角和定理得出∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,即可得出结论; ③由,∠1+∠2=60°,得出∠2≥2(60°−∠2),解得∠2≥40°,由三角形内角和定理得出∠2+∠NDM+α+∠A=180°,即∠2+30°+α+50°=180°,则∠2=100°−α,得出100°−α≥40°,解得α≤60°,再由当顶点C在△DEF内部时,55°<α<85°,即可得出结果. 【详解】 解:(1)∵∠B=40°, ∴当∠EDA=∠B=40°时,, 而∠EDF=30°, ∴, 解得:α=10°; 当时,DE⊥AB, 此时∠A+∠EDA=180°, , ∴, 解得:α=100°; 故答案为10°,100°; (2)①∵∠ABC=40°,CD平分∠ACB, ∴∠ACD=45°,∠A=50°, ∴∠CDA=85°, 当点C在DE边上时,, 解得:, 当点C在DF边上时,, ∴当顶点C在△DEF内部时,; 故答案为:; ②∠1与∠2度数的和不变;理由如下: 连接MN,如图所示: 在△CMN中,∵∠CNM+∠CMN+∠MCN=180°, ∴∠CNM+∠CMN=90°, 在△MND中,∵∠DNM+∠DMN+∠MDN=180°, 即∠2+∠CNM+∠CMN+∠1+∠MDN=180°, ∴; ③∵∠2≥2∠1,∠1+∠2=60°, ∴, ∴∠2≥40°, ∵, 即, ∴, ∴, 解得:α≤60°, ∵当顶点C在△DEF内部时,, ∴∠α的度数范围为. 【点睛】 本题考查了平行线的性质、直角三角形的性质、三角形内角和定理、不等式等知识,合理选择三角形后利用三角形内角和定理列等量关系是解决问题的关键. 12.(1)30,100;(2),见解析;(3)可以,或 【解析】 【分析】 (1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ; (2)当 AB=DC 时,利用 AAS 可证明 ΔABD≅ΔDCE ,即可得出 AB=DC=3 ; (3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出 ∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB . 【详解】 (1)在 △BAD 中, ∵∠B=50°,∠BDA=100° , ∴, . 故答案为,. (2)当时,,理由如下: ∵, ∴ ∵, ∴ ∵ ∴ 在和中 ∴ (3)可以,理由如下: ∵, ∴ 分三种情况讨论: ①当时, ∵, ∴ ∴ ∵ ∴ ②当时, ∵ ∴ 又∵ ∴ ∴点D与点B重合,不合题意. ③当时, ∴ ∵ ∴ 综上所述,当的度数为或时,是等腰三角形. 【点睛】 本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键. 13.(1)EM⊥CF,理由见解析;(2)证明见解析;(3)不变,且∠NEM=45°,理由见解析. 【解析】 【分析】 (1)EM⊥CF,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可; (2)根据垂直定义和三角形的内角和定理证得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和对顶角相等即可证得结论; (3)不变,且∠NEM=45°,先利用平行线的性质得到∠AEC=∠ECO=2∠ECP,进而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分线的定义∠NEP=∠AEN=45°+∠ECP,再根据同角的余角相等得到∠ECP=∠MEP,然后等量代换证得∠NEM=45°,是定值. 【详解】 解:(1)EM⊥CF,理由如下: ∵CF平分∠ECO,EM平分∠FEC, ∴∠ECF=∠FCO=,∠FEM=∠CEM= ∵AB∥x轴 ∴∠ECO+∠CEF=180° ∴∠EMC=180°-(∠CEM+∠ECF)=180°-90°=90° ∴EM⊥CF (2)由题得,∠EOC=90° ∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90° ∵PE⊥CE ∴∠CEP=90° ∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90° ∵∠DCO=∠ECP ∴∠CDO=∠EPC 又∵∠CDO=∠EDP ∴∠EPC=∠EDP (3)不变,且∠NEM=45°,理由如下: ∵AB∥x轴 ∴∠AEC=∠ECO=2∠ECP ∴∠AEP=∠CEP+∠AEC=90°+2∠ECP ∵EN平分∠AEP ∴∠NEP=∠AEN===45°+∠ECP ∵∠CEP=90° ∴∠ECP+∠EPC=90° 又∵∠EMC=90° ∴∠MEP+∠EPC=90° ∴∠ECP=∠MEP ∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP 又∵∠NEP=45°+∠ECP ∴∠NEM=45°. 【点睛】 本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻找相关联信息,确定解题思路,进而探究、推理、论证. 14.(1)见解析;(2)见解析;(3)猜想:∠H= 3∠GDB,证明见解析. 【解析】 【分析】 (1)作辅助线:过C作EF∥MN,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等∠MAC=∠ACF,∠BCF=∠PBC,再进行角的加和即可得出结论; (2)根据角平分线线定理得知,利用平角为180°得到∠DAE=90°,同理得,再根据四边形内角和180°,得出结论; (3)由(1)(2)中的结论进行等量代换得到3∠ADB=2∠E,并且两角的和为180°,由此得到两个角的度数分别为72°和108°,利用角的和与差得到∠HDA=36°,∠H=54°,由此得到倍数关系. 【详解】 (1)如图:过C作EF∥MN, ∵MN∥PQ, ∴MN∥EF∥PQ, ∴∠MAC=∠ACF,∠BCF=∠PBC, ∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC. (2)∵AD,AE分别为∠MAC,∠CAN的角平分线, ∴, ∴,于是∠DAE=90° 同理可得:,由(1)可得: ∵ . (3)猜想:∠H= 3∠GDB. 理由如下:由(1)可知:, ∵3∠C=4∠E, ∴6∠ADB=4∠E, ∴3∠ADB=2∠E,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广州市 附中 年级 上册 压轴 数学模拟 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文