Ornstein-Uhlenbeck投资模型下相关索赔的鲁棒最优再保险投资策略.pdf
《Ornstein-Uhlenbeck投资模型下相关索赔的鲁棒最优再保险投资策略.pdf》由会员分享,可在线阅读,更多相关《Ornstein-Uhlenbeck投资模型下相关索赔的鲁棒最优再保险投资策略.pdf(7页珍藏版)》请在咨信网上搜索。
1、Robust optimal reinsurance-investment strategy with correlated claims forOrnstein-Uhlenbeck investment modelWANG Jie,WANG Xiulian(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)Abstract:The robust optimal reinsurance-investment problem with correlated claims under the
2、 Ornstein-Uhlenbeck(OU)investment model is considered on the basis of general diffusion model.The loss-dependent premium principle is taken and it isassumed that the insurance company makes both risk-free and risky investments while purchasing proportional reinsurance.Under the objective of maximizi
3、ng the expected utility from final wealth,combined with the ambiguity aversion of investors,theexplicit solutions for the robust optimal reinsurance-investment strategy and the optimal value function are obtained usingstochastic optimal control method.The influences ofcorrelated claims and robustnes
4、s on the optimal strategy are studied throughnumerical examples.Keywords:Ornstein-Uhlenbeck process;correlated claims;ambiguity aversion;reinsurance-investmentstrategyOrnstein-Uhlenbeck 投资模型下相关索赔的鲁棒最优再保险投资策略王婕,王秀莲(天津师范大学 数学科学学院,天津 300387)摘要:在一般扩散模型的基础上研究 Ornstein-Uhlenbeck(OU)投资模型下相关索赔的鲁棒最优再保险投资问题.采
5、用损失相关保费准则,假设保险公司在购买比例再保险的同时进行无风险投资和风险投资.在最大化终端财富期望效用的目标下,结合决策者的模糊厌恶情况,利用随机最优控制方法,得到了鲁棒最优再保险投资策略和最优值函数的显式解.通过数值算例研究相关索赔及模型的鲁棒性对最优策略的影响.关键词:Ornstein-Uhlenbeck 过程;相关索赔;模糊厌恶;再保险投资策略中图分类号:O211.67文献标志码:A文章编号:1671-1114(2023)03-0001-07收稿日期:2021-12-02基金项目:国家自然科学基金资助项目(11401436);天津市教委科研基金资助项目(JW1714)第一作者:王婕(1
6、997),女,硕士研究生.通信作者:王秀莲(1965),女,副教授,主要从事概率统计及其应用方面的研究.E-mail:.第 43 卷第 3 期2023 年 5 月天 津 师 范 大 学 学 报(自 然 科 学 版)Journal of Tianjin Normal University(Natural Science Edition)Vol.43 No.3May 2023doi:10.19638/j.issn1671-1114.20230301保险公司购买再保险可以有效分散巨额索赔风险,而投资可以使保险公司实现财富价值最大化.因此,不同目标下再保险和投资的最优策略问题得到许多学者关注1-6.文
7、献7-8的实证研究表明,未来索赔和历史索赔存在相关性,但如何正确描述其相关性仍未解决.文献9首次引入外推偏差研究相关索赔,认为投资者应基于市场过去的价格变化预测未来的价格变化.文献10-11将相关索赔应用于保险市场,得到值函数的解和最优再保险策略,但没有考虑风险资产投资.文献12在此基础上加入无风险和风险资产投资,得到了稳健最优再保险投资策略,并指出相关索赔可以有效提高保险公司的财富价值.较多文献以几何布朗运动刻画风险资产的价格过程,其收益率和波动率均为常数或确定性函数,不能有效反映市场的波动性和状态.基于此,文献13采用 Ornstein-Uhlenbeck(OU)过程刻画股票的瞬时收益率,
8、研究了指数效用和对数效用情况下的最优投资策略;文献14研究了最大化终端财富指数效用下的最优再保险投资策略;文献15研究了均值-方差准则下的最优再保险投资策略.在现实的金融市场中,由于信息缺乏以及模型参数估计的各种误差,决策者很难得到唯一确定的概率模型,这天 津 师 范 大 学 学 报(自 然 科 学 版)2023 年 5 月类问题称为“模型的不确定性”问题,也称为鲁棒性问题.文献16在文献1的基础上研究了金融市场模型的模糊性问题.文献17在文献14的基础上考虑了模型不确定性,得到模型的不确定性会给模糊厌恶者带来效用损失.本文同时考虑相关索赔和 OU 投资模型,在最大化终端财富期望效用的目标下,
9、研究鲁棒最优再保险投资问题.利用动态规划原理得到了值函数满足的Hamilton-Jacobi-Bellman(HJB)方程,进而得到值函数及最优再保险投资策略的显式解.最后通过数值算例考察相关参数对最优策略的影响.1模型描述设(,t,P)为完备的概率空间,其中:t,0tT为由一个复合 Poisson 过程L(t),t0和 3 个一维标准布朗运动Wi(t),t0(i=1、2、3)生成的信息流,包含时刻 t 之前的所有信息;P 为完备的概率测度.假设投资在有限时间区间0,T内是可交易的,T为最终交易时间,并且允许连续交易,不涉及交易成本和税收,所有资产都是无限可分的.1.1保险公司财富过程采用经典
10、的 Cramr-Lundberg 风险模型刻画保险公司的财富过程 X(t),即X(t)=x+ct-N(t)i=1移Yi(1)式中:xR 为初始盈余;c 为保费率;L(t)=N(t)i=1移Yi为复合 Poisson 过程,且 L(0)=0;N(t),t0为强度 0的齐次Poisson 过程,表示截止时刻 t 的理赔次数;Yi为第 i次的理赔额.设Yii0为独立同分布的随机变量,与N(t),t0相互独立,Yi具有有限的一阶矩 1=E(Yi)和二阶矩 2=E(Yi2).索赔过程 L(t)可以被近似为带漂移的布朗运动,即dL(t)=1dt-2姨dW1(t)0tT(2)采用以下外推偏差衡量相关索赔v(
11、t)=t0乙e-(t-s)dL(s-ds)0 0 为保险人的安全负荷,e-t1为预期索赔的加权平均值.为确保历史索赔的加权平均值是有限的,假设|v(t)|M,0tT,M 为正常数.对式(3)求导数得dv(t)=-v(t)dt+dL(t)(4)应用损失相关保费准则将式(2)改写为dL(t)=(e-t1+v(t)dt-2姨dW1(t)(5)将式(5)带入式(4)得dv(t)=e-t1dt-2姨dW1(t)(6)假设保险公司通过购买比例再保险规避一定的风险,设 q(t)0,1为购买比例再保险后时刻 t 的风险自留比例.当索赔发生时,保险公司的赔付额为q(t)Yi,再保险公司的赔付额为(1-q(t)Y
12、i.假设再保险公司也按损失相关保费准则收取再保费,再保费率 c1=(1+2)(1-q(t)(e-t1+v(t),其中:2 0为再保险人的安全负荷,满足 2 1.保险公司在时刻 t 的盈余满足随机微分方程dXtq=(c-c1)dt-q(t)dL(t)=(1+1)(e-t1+v(t)-(1+2)(1-q(t)(e-t1+v(t)dt-q(t)(e-t1+v(t)dt-2姨dW1(t)=(e-t1+v(t)(1-2+q(t)2)dt+q(t)2姨dW1(t)(7)式中:Xtq为考虑再保险后的财富过程,X0q=x.1.2金融市场假设保险公司投资 2 种金融资产:无风险资产(债券)和风险资产(股票).债
13、券的价格过程为dP1(t)=rP1(t)dt(8)其中 r 0 为无风险利率.采用 OU 过程刻画股票价格的收益率,股票的价格过程满足dP2(t)=P2(t)(a+m(t)dt+bdW2(t)dm(t)=m(t)dt+dW3(tt)(9)式中:t0,T;a 和 b 均为正常数,分别为股票价格的漂移率和波动率,假设 a r,a+m(t)r;、为常数;标准布朗运动 W2(t)和 W3(t)的相关系数为,即cov(W2(t),W3(t)=t.当 m(t)0 时,表示股市正处于“牛市”,当 m(t)0 对(t,w)0,T 几乎处处成立;(3)i(t)满足 Novikov 条件EP3i=1移12T0乙i
14、2(t)dd?t (t)构成的集合记为.由式(9)和式(10)可知模糊性来自布朗运动 Wi(t),因此 i(t)与 Wi(t)相关,i=1、2、3.定义(t)=exp乙d3i=1移乙乙-t0乙i(s)dWi(s)-12t0乙i2(s)ds乙乙乙?设测度 Q 满足dQdPr=(t),并令dWiQ(t)=dWi(t)+i(t)dti=1、2、3(11)由 Girsanov 定理可知 WiQ(t)在测度 Q 下为标准布朗运动.W1Q(t)与 W2Q(t)、W3Q(t)互相独立,W2Q(t)、W3Q(t)仍存在相关性,满足 cov(W2Q(t),W3Q(t)=t.将式(11)代入式(10),得到在测度
15、 Q 下盈余满足的随机微分方程dXtu,Q=rXtu+(a+m(t)-r-b2(t)(t)+(e-t1+v(t)(1-2+q(t)2)-q(t)1(t)2姨dt+q(t)2姨dW1Q(t)+(t)bdW2Q(t)(12)由式(12)可见,引入模糊性只改变了财富过程的漂移项,并没有改变方差项.在测度 Q 下,式(6)和式(9)分别改写为dvQ(t)=(e-t1+2姨1(t)dt-2姨dW1Q(t)(13)dmQ(t)=(m(t)-3(t)dt+dW3Q(t)(14)Q 和 P 的相对熵为KL(QP)=EQln(t)=EQ乙乙3i=1移乙乙-t0乙i(s)dWiQ(s)+12t0乙i2(s)ds乙
16、乙乙乙=EQ乙乙3i=1移t0乙12t0乙i2(s)ds乙乙且有 dKL(QP)=3i=1移12i2(t)dt.当考虑最优策略时,由于选用了替代模型,则会带来惩罚.定义罚函数为(t,Xtu,v(t),m(t),(t)=3i=1移i2(t)2i(t,Xtu,v(t),m(t)(15)式中 i(t,Xtu,v(t),m(t)为模糊偏好函数,i=1、2、3.罚函数与相对熵密切相关,KL(QP)越大,罚函数越大.i(t,Xtu,v(t),m(t)越大,表明保险公司对于参考模型 P 越不信任,而更趋向于选用替代模型 Q.定义再保险投资策略 u(t)=(t),q(t),t0,T称为可行策略,如果(1)坌t
17、0,T,(t),q(t)为t循序可测的;(2)EQt,x,v,m乙dT0乙q2(t)+2(t)dt乙?0,U(x)0 为风险厌恶系数.定义模糊偏好函数为i(t,x,v,m)=-iV(t,x,v,m)i=1、2、3(19)式中:i 0 为模糊厌恶系数,i(t,x,v,m)0.当 i=0 时,表示保险人不考虑模型的模糊性,即保险人是模糊风险中性的;当 i+时,表示保险人对模糊风险极度厌恶(对应最坏情形),将完全不考虑参考模型而选用替代模型,此时式(15)对应的罚函数将消失.定理 2对于鲁棒最优控制问题(16),最优比例再保险和最优投资策略分别为q*(t)=(e-t1+v)2-2Gv(+1)2er(
18、T-t)(+1)0*(t)=a+m-r+bGmb2er(T-t)(+2)?(20)相应的值函数为V(t,x,v,m)=-1exp-xer(T-t)+G(t,v,m)(21)最优控制策略为1*(t)=2姨1Gv+qer(T-tt?)2*(t)=b2er(T-t)3*(t)=-3Gm?(22)式中:G、Gv、Gm由式(31)、式(32)、式(36)式(40)给出.证明设值函数的形式为H(t,x,v,m)=-1exp-xer(T-t)+G(t,v,m)(23)其中 G(t,v,m)满足边界条件 G(T,v,m)=0.由式(23)可得Ht(t,x,v,m)=H(rxer(T-t)+Gt)Hx(t,x,
19、v,m)=-Her(T-t)Hv(t,x,v,m)=HGvHm(t,x,v,m)=HGmHxx(t,x,v,m)=2He2r(T-t)Hvv(t,x,v,m)=H(Gv2+Gvv)Hmm(t,x,v,m)=H(Gm2+Gmm)Hxv(t,x,v,m)=-HGver(T-t)Hxm(t,x,v,m)=-HGmer(T-t?)(24)对某个固定策略 u(t)=(q(t),(t),将式(18)展开得supuinf乙?Ht(t,x,v,m)+rx+(a+m-r-b2)+(e-t1+v)(1-2+q2)-q22姨 Hx(t,x,v,m)+12(q22+2b2)Hxx(t,x,v,m)+(e-t1+2姨1
20、)Hv(t,x,v,m)+1222Hvv(t,x,v,m)+(m-3)Hm(t,x,v,m)+122Hmm(t,x,v,m)-q2Hxv(t,x,v,m)+bHxm(t,x,v,m)-1221H(t,x,v,m)-2222H(t,x,v,m)-3223H(t,x,v,m)乙乙=0(25)根据一阶最优条件可得 i(t)的最小值为赞1(t)=2姨1(Hv-qHx)H赞2(t)=-b2HxH赞3(t)=-3HmH?(26)将式(23)和式(24)代入式(26),可得4第 43 卷第 3 期(35.1)(35.2)(35.3)(35.4)(35.5)1*(t)=2姨1Gv+qer(T-tt?)2*(t
21、)=b2er(T-t)3*(t)=-3Gm?(27)将式(23)、式(24)和式(27)代入式(25),再除以 H(t,x,v,m),由于 H(t,x,v,m)0,最优策略 u*(t)=(q*(t),*(t)由取上确界变为取下确界,因此有Gt-(e-t1+v)(1-2)er(T-t)+e-t1Gv+1222(Gv2+Gvv)+mGm+122(Gm2+Gmm)+122Gv22+32Gm22+infq乙?122e2r(T-t)(+1)q2+(e-t1+v)2(-er(T-t))+2Gver(T-t)+12Gver(T-t)q乙乙+inf乙?12b2e2r(T-t)(+2)2+(-er(T-t))(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Ornstein Uhlenbeck 投资 模型 相关 索赔 最优 再保险 策略
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。