人教版初一数学下册相交线与平行线检测含答案(3).doc
《人教版初一数学下册相交线与平行线检测含答案(3).doc》由会员分享,可在线阅读,更多相关《人教版初一数学下册相交线与平行线检测含答案(3).doc(30页珍藏版)》请在咨信网上搜索。
一、选择题 1.如图,的角平分线、相交于F,,,且于G,下列结论:①;②平分;③;④.其中正确的结论是( ) A.①③④ B.①②③ C.②④ D.①③ 2.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( ) A.70° B.45° C.110° D.135° 3.如图,直线,点在上,点、点在上,的角平分线交于点,过点作于点,已知,则的度数为( ) A.26º B.32º C.36º D.42º 4.如图,下列各式中正确的是( ) A. B. C. D. 5.如图,两个直角三角形重叠在一起,将ABC沿AB方向平移2cm得到DEF,CH=2cm,EF=4cm,下列结论:①BHEF;②AD=BE;③DH=CH;④∠C=∠BHD;⑤阴影部分的面积为6cm2.其中正确的是( ) A.①②③④⑤ B.②③④⑤ C.①②③⑤ D.①②④⑤ 6.如图,△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,P为直线AB上一动点,连接PC,则线段PC的最小值是( ) A.3 B.2.5 C.2.4 D.2 7.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 8.小明、小亮、小刚一起研究一道数学题,如图,已知,. 小明说:“如果还知道,则能得到.” 小亮说:“把小明的已知和结论倒过来,即由,可得到.” 小刚说:“连接,如果,则能得到.” 则说法正确的人数是( ) A.3人 B.2人 C.1人 D.0人 9.如图,直线,点,分别是,上的动点,点在上,,和的角平分线交于点,若,则的值为( ). A.70 B.74 C.76 D.80 10.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是( ) A.①②③ B.①②④ C.②③④ D.①②③④ 二、填空题 11.如图,已知A1BAnC,则∠A1+∠A2+…+∠An等于__________(用含n的式子表示). 12.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm. 13.一副三角尺按如图所示叠放在一起,其中点重合,若固定三角形,将三角形绕点顺时针旋转一周,共有 _________次 出现三角形的一边与三角形AOB的某一边平行. 14.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°) 15.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______. 16.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD的度数为________. 17.如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于______. 18.有长方形纸片,E,F分别是AD,BC上一点∠DEF=x(0°<x<45°),将纸片沿EF折叠成图1,再沿GF折叠成图2. (1)如图1,当x=32°时,=_____度; (2)如图2,作∠MGF的平分线GP交直线EF于点P,则∠GPE=_____(用x的式子表示). 19.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论:(1);(2);(3);(4).正确的有________个. 20.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD.若CD∥BE,∠1=28°,则∠2的度数是______. 三、解答题 21.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 22.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 23.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点. (1)如图1,求证:; (2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 24.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN. (1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时, ①试判断PM与MN的位置关系,并说明理由; ②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线) (2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理) 25.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.A 解析:A 【分析】 根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案. 【详解】 解:①∵EG∥BC, ∴∠CEG=∠ACB, 又∵CD是△ABC的角平分线, ∴∠CEG=∠ACB=2∠DCB,故本选项正确; ②无法证明CA平分∠BCG,故本选项错误; ③∵∠A=90°, ∴∠ADC+∠ACD=90°, ∵CD平分∠ACB, ∴∠ACD=∠BCD, ∴∠ADC+∠BCD=90°. ∵EG∥BC,且CG⊥EG, ∴∠GCB=90°,即∠GCD+∠BCD=90°, ∴∠ADC=∠GCD,故本选项正确; ④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC, ∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°, ∴∠DFE=360°﹣135°﹣90°=135°, ∴∠DFB=45°=∠CGE,故本选项正确. 故选:A. 【点睛】 本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键. 2.C 解析:C 【分析】 根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数. 【详解】 解:∵∠1与∠5是对顶角, ∴∠1=∠2=∠5=45°, ∴a∥b, ∴∠3+∠6=180°, ∵∠3=70°, ∴∠4=∠6=110°. 故答案为C. 【点睛】 本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键. 3.A 解析:A 【分析】 依据∠OGD=148°,可得∠EGO=32°,根据AB∥CD,可得∠EGO =∠GOF,根据GO平分∠EOF,可得∠GOE =∠GOF,等量代换可得:∠EGO=∠GOE=∠GOF=32°,根据,可得:=90°-32°-32°=26° 【详解】 解:∵ ∠OGD=148°, ∴∠EGO=32° ∵AB∥CD, ∴∠EGO =∠GOF, ∵的角平分线交于点, ∴∠GOE =∠GOF, ∵∠EGO=32° ∠EGO =∠GOF ∠GOE =∠GOF, ∴∠GOE=∠GOF=32°, ∵, ∴=90°-32°-32°=26° 故选A. 【点睛】 本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等. 4.D 解析:D 【详解】 试题分析:延长TS, ∵OP∥QR∥ST, ∴∠2=∠4, ∵∠3与∠ESR互补, ∴∠ESR=180°﹣∠3, ∵∠4是△FSR的外角, ∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2, ∴∠2+∠3﹣∠1=180°. 故选D. 考点:平行线的性质. 5.D 解析:D 【分析】 根据平移的性质直接可判断①②;先根据线段的和差可得,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形的面积即可判断⑤. 【详解】 解:由题意得:, 由平移的性质得:, , 则结论①②正确; , , 在中,斜边大于直角边, ,即结论③错误; , ,即结论④正确; 由平移的性质得:的面积等于的面积, 则阴影部分的面积为, , , , , 即结论⑤正确; 综上,结论正确的是①②④⑤, 故选:D. 【点睛】 本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 6.C 解析:C 【分析】 当PC⊥AB时,PC的值最小,利用面积法求解即可. 【详解】 解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5, ∵当PC⊥AB时,PC的值最小, 此时:△ABC的面积=•AB•PC=•AC•BC, ∴5PC=3×4, ∴PC=2.4, 故选:C. 【点睛】 本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高. 7.D 解析:D 【分析】 根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④. 【详解】 解:,, , 平分, ,故①正确; , , ,故②正确; ,, ,故③正确; ,, ,故④正确. 正确为①②③④, 故选:D. 【点睛】 本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键. 8.B 解析:B 【分析】 由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案. 【详解】 解:∵EF⊥AB,CD⊥AB, ∴CD∥EF, ∴∠BCD=∠BFE, 若∠CDG=∠BFE, ∴∠BCD=∠CDG, ∴DG∥BC, ∴∠AGD=∠ACB, ∴小明的说法正确; 若∠AGD=∠ACB, ∴DG∥BC, ∴∠BCD=∠CDG ∴∠BCD=∠BFE ∴小亮的说法正确; 连接GF,如果FG//AB, ∠GFC=∠ABC 若∠GFC=∠ADG 则∠ABC=∠ADG 则DG∥BC 但是DG∥BC不一定成立 ∴小刚的说法错误; 综上知:正确的说法有两个. 故选B. 【点睛】 本题主要考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键. 9.C 解析:C 【分析】 先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可. 【详解】 解:过C作CH∥MN, ∴∠6=∠5,∠7=∠1+∠2, ∵∠ACB=∠6+∠7, ∴∠ACB=∠5+∠1+∠2, ∵∠D=52°, ∴∠1+∠5+∠3=180°−52°=128°, 由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线, ∴∠1=∠2,∠3=∠4, ∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°, ∴∠3=∠4=∠1+52°, ∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°, ∴m°+52°=128°, ∴m°=76°. 故选:C. 【点睛】 本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 10.B 解析:B 【分析】 根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确. 【详解】 解:如图, ∵BC平分∠ACD,CF平分∠ACG, ∴ ∵∠ACG+∠ACD=180°, ∴∠ACF+∠ACB=90°, ∴CB⊥CF,故①正确, ∵CD∥AB,∠BAC=50°, ∴∠ACG=50°, ∴∠ACF=∠4=25°, ∴∠ACB=90°-25°=65°, ∴∠BCD=65°, ∵CD∥AB, ∴∠2=∠BCD=65°, ∵∠1=∠2, ∴∠1=65°,故②正确; ∵∠BCD=65°, ∴∠ACB=65°, ∵∠1=∠2=65°, ∴∠3=50°, ∴∠ACE=15°, ∴③∠ACE=2∠4错误; ∵∠4=25°,∠3=50°, ∴∠3=2∠4,故④正确, 故选:B. 【点睛】 此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系. 二、填空题 11.【分析】 过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案. 【详解】 解:如图,过点向右作,过点向右作 , 故答案为:. 【点睛】 本题考查了平行线的性质定理,根据题 解析: 【分析】 过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案. 【详解】 解:如图,过点向右作,过点向右作 , 故答案为:. 【点睛】 本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键. 12.9 【分析】 根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长. 【详解】 ∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平 解析:9 【分析】 根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长. 【详解】 ∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移acm ∴DE=AB=3cm,BE=acm ∴EC=BC-BE=(4-a)cm ∴阴影部分周长=2+3+(4-a)+a=9cm 故答案为:9 【点睛】 本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE. 13.【分析】 要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算. 【详解】 解:分10种情况讨论: (1)如图1,AD边与OB边平行时,∠BAD=45°或135°;; 解析: 【分析】 要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算. 【详解】 解:分10种情况讨论: (1)如图1,AD边与OB边平行时,∠BAD=45°或135°;; (2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°; (3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°, (4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°, (5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°; (6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105° (7)如图7,DC边与AB边平行时,∠BAD=30°, (8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°; 综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°. 故答案为:8. 【点睛】 本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键. 14.【详解】 作IF∥AB,GK∥AB,JH∥AB 因为AB∥CD 所以,AB∥CD∥ IF∥GK∥JH 所以,∠IFG=∠FEC=10° 所以,∠GFI=90°-∠IFG=80° 所以,∠KGF=∠ 解析:【详解】 作IF∥AB,GK∥AB,JH∥AB 因为AB∥CD 所以,AB∥CD∥ IF∥GK∥JH 所以,∠IFG=∠FEC=10° 所以,∠GFI=90°-∠IFG=80° 所以,∠KGF=∠GFI=80° 所以,∠HGK=150°-∠KGF=70° 所以,∠JHG=∠HGK=70° 同理,∠2=90°-∠JHG=20° 所以,∠1=90°-∠2=70° 故答案为70 【点睛】 本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等. 15.y=90°-x+z. 【分析】 作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90 解析:y=90°-x+z. 【分析】 作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可. 【详解】 解:作CG∥AB,DH∥EF, ∵AB∥EF, ∴AB∥CG∥HD∥EF, ∴∠x=∠1,∠CDH=∠2,∠HDE=∠z ∵∠BCD=90° ∴∠1+∠2=90°, ∠y=∠CDH+∠HDE=∠z+∠2, ∵∠2=90°-∠1=90°-∠x, ∴∠y=∠z+90°-∠x. 即y=90°-x+z. 【点睛】 本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键. 16.36° 【分析】 先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,根据角平分线定义得到∠AOC∠EOC72°=36°,然后根据对顶 解析:36° 【分析】 先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,根据角平分线定义得到∠AOC∠EOC72°=36°,然后根据对顶角相等得到∠BOD=∠AOC=36°. 【详解】 解:设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°, ∴∠EOC=2x=72°, ∵OA平分∠EOC, ∴∠AOC∠EOC72°=36°, ∴∠BOD=∠AOC=36°. 故答案为:36° 【点睛】 考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等. 17.105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上 解析:105° 【分析】 根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可. 【详解】 解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处, ∴∠DEF=∠HEF, ∵∠AEH=30°, ∴, ∵四边形ABCD是长方形, ∴AD∥BC, ∴∠DEF+∠EFC=180°, ∴∠EFC=180°-75°=105°, 故答案为:105°. 【点睛】 本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF=∠HEF和∠DEF+∠EFC=180°是解此题的关键. 18.2x 【分析】 (1)由长方形的对边是平行的,得到∠BFE=∠DEF=30°,根据三角形外角的性质得到∠EGB=∠BFE+∠DEF=60°,由对顶角的性质得到∠FGD′=∠EGB=60°,即 解析:2x 【分析】 (1)由长方形的对边是平行的,得到∠BFE=∠DEF=30°,根据三角形外角的性质得到∠EGB=∠BFE+∠DEF=60°,由对顶角的性质得到∠FGD′=∠EGB=60°,即可得到∠GFC′=180°﹣∠FGD′=120°; (2)由长方形的对边是平行的,设∠BFE=∠DEF=x,根据三角形外角的性质得到∠EGB=∠BFE+∠D′EF=2x,由对顶角的性质得到∠FGD′=∠EGB=2x,由折叠可得∠MGF=∠D′GF=2x,由角平分线的定义得到∠PGF=x,再根据三角形外角的性质得到∠GPE,从而求解. 【详解】 解:(1)由折叠可得∠GEF=∠DEF=32°, ∵长方形的对边是平行的, ∴∠DEG=∠FGD′, ∴∠DEG=∠GFE+∠DEF=64°, ∴∠FGD′=∠EGD=64°, ∴当x=30度时,∠GFD′的度数是64°. 故答案为:64; (2)∠GPE=2∠GEP=2x. 由折叠可得∠GEF=∠DEF, ∵长方形的对边是平行的, ∴设∠BFE=∠DEF=x, ∴∠EGB=∠BFE+∠D′EF=2x, ∴∠FGD′=∠EGB=2x, 由折叠可得∠MGF=∠D′GF=2x, ∵GP平分∠MGF, ∴∠PGF=x, ∴∠GPE=∠PGF+∠BFE=2x, ∴∠GPE=2∠GEP=2x. 故答案为:∠GPE=2x. 【点睛】 本题考查翻折变换的性质、平行线的性质,熟悉掌握相关知识点并准确识图,理清翻折前后重叠的角是解题的关键. 19.3 【分析】 (1)根据平行线的性质即可得到答案; (2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°, 解析:3 【分析】 (1)根据平行线的性质即可得到答案; (2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确; (3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确; (4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果. 【详解】 解:(1)∵,∠EFB=32°, ∴∠C′EF=∠EFB=32°,故本小题正确; (2)∵AE∥BG,∠EFB=32°, ∴∠AEF=180°-∠EFB=180°-32°=148°, ∵∠AEF=∠AEC+∠GEF, ∴∠AEC<148°,故本小题错误; (3)∵∠C′EF=32°, ∴∠GEF=∠C′EF=32°, ∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°, ∵AC′∥BD′, ∴∠BGE=∠C′EG=64°,故本小题正确; (4)∵∠BGE=64°, ∴∠CGF=∠BGE=64°, ∵, ∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确. 故正确的为:(1)(3)(4)共3个, 故答案为:3. 【点睛】 本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键. 20.56° 【分析】 由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD=180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°. 【详解】 解:如 解析:56° 【分析】 由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD=180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°. 【详解】 解:如图,由折叠的性质,可得∠3=∠1=28°, ∴∠4=∠1+∠3=56°, ∵CD∥BE,AC∥BD, ∴∠EBD=180°﹣∠4=124°, 又∵CD∥BE, ∴∠2=180°﹣∠CBD=180°﹣124°=56°. 故答案为:56°. 【点睛】 本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 三、解答题 21.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 22.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,. 【分析】 (1)过点作,根据平行线的性质即可求解; (2)分两种情况:当点在上,当点在上,再过点作即可求解. 【详解】 (1)证明:如图,过点作, ∴, ∵, ∴. ∴. ∵, ∴, ∴. (2)补全图形如图2、图3, 猜想:或. 证明:过点作. ∴. ∵, ∴ ∴, ∴. ∵平分, ∴. 如图3,当点在上时, ∵平分, ∴, ∵, ∴, 即. 如图2,当点在上时, ∵平分, ∴. ∴. 即. 【点睛】 本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系. 24.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN; ②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解; (2)分三种情况讨论,利用平行线的性质即可解决. 【详解】 解:(1)①PM⊥MN,理由见解析: ∵AB//CD, ∴∠APM=∠PMQ, ∵∠APM+∠QMN=90°, ∴∠PMQ +∠QMN=90°, ∴PM⊥MN; ②过点N作NH∥CD, ∵AB//CD, ∴AB// NH∥CD, ∴∠QMN=∠MNH,∠EPA=∠ENH, ∵PA平分∠EPM, ∴∠EPA=∠ MPA, ∵∠APM+∠QMN=90°, ∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°, ∴∠MNQ +∠MNH +∠MNH=90°, ∵∠MNQ=20°, ∴∠MNH=35°, ∴∠EPA=∠ENH=∠MNQ +∠MNH=55°, ∴∠EPB=180°-55°=125°, ∴∠EPB的度数为125°; (2)当点M,N分别在射线QC,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM=∠PMQ, ∴∠APM +∠QMN=90°; 当点M,N分别在射线QC,线段PQ上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMN=90°,∠APM=∠PMQ, ∴∠PMQ -∠QMN=90°, ∴∠APM -∠QMN=90°; 当点M,N分别在射线QD,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°, ∴∠APM+90°-∠QMN=180°, ∴∠APM -∠QMN=90°; 综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键. 25.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初一 数学 下册 相交 平行线 检测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文