初一数学下册期末压轴题试卷及答案(20).doc
《初一数学下册期末压轴题试卷及答案(20).doc》由会员分享,可在线阅读,更多相关《初一数学下册期末压轴题试卷及答案(20).doc(45页珍藏版)》请在咨信网上搜索。
一、解答题 1.如图1,在平面直角坐标系中,,且满足,过作轴于. (1)求的面积. (2)若过作交轴于,且分别平分,如图2,求的度数. (3)在轴上存在点使得和的面积相等,请直接写出点坐标. 2.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现: (1)如图1.若,求的度数; (2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由. (3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 3.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 4.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 5.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 6.如图①,将一张长方形纸片沿对折,使落在的位置; (1)若的度数为,试求的度数(用含的代数式表示); (2)如图②,再将纸片沿对折,使得落在的位置. ①若,的度数为,试求的度数(用含的代数式表示); ②若,的度数比的度数大,试计算的度数. 7.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,… (1)求a2,a3,a4的值; (2)根据(1)的计算结果,请猜想并写出a2016•a2017•a2018的值; (3)计算:a33+a66+a99+…+a9999的值. 8.(阅读材料) 数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙. 你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试: 第一步:∵,,, ∴. ∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9, ∴能确定59319的立方根的个位数是9. 第三步:如果划去59319后面的三位319得到数59, 而,则,可得, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题) 根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2)填空:__________. 9.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试: (1)由,因为,请确定是______位数; (2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________ (3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=____; 10.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”. (1)请直接写出最小的四位依赖数; (2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数. (3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值. 11.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 12.阅读材料,回答问题: (1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________. (2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准 2元 4公里/元 6公里/元 8公里/元 ①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元; ②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)? 13.已知、两点的坐标分别为,,将线段水平向右平移到,连接,,得四边形,且. (1)点的坐标为______,点D的坐标为______; (2)如图1,轴于,上有一动点,连接、,求最小时点位置及其坐标,并说明理由; (3)如图2,为轴上一点,若平分,且于,.求与之间的数量关系. 14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 15.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD (1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积; (2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由. 16.在平面直角坐标系中,点,,,且,,满足. (1)请用含的式子分别表示,两点的坐标; (2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围; (3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围. 17.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题: 如图,在平面直角坐标系xOy中,点P的坐标为(1,0). (1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是 ; (2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围 . (3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥S△PQN,求出点N纵坐标的取值范围. 18.如图1,在直角坐标系中直线与、轴的交点分别为,,且满足. (1)求、的值; (2)若点的坐标为且,求的值; (3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围. 19.判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程. 解:①×2-②×3,得,解得, 把代入方程①,得,解得. ∴原方程组的解为 20.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7. (1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2); (2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值; (3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值. 21.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题: (1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费. 22.在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+b﹣2|+=0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,D. (1)请直接写出A、B、C、D四点的坐标. (2)点E在坐标轴上,且S△BCE=S四边形ABDC,求满足条件的点E的坐标. (3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)求:的值. 23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:) (1)列出方程(组),求出图甲中a与b的值; (2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒. ①两种裁法共产生A型板材________张,B型板材_______张; ②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值. 24.阅读感悟: 有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数、满足①,②,求和的值. 本题常规思路是将①②两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”. 解决问题: (1)已知二元一次方程组,则_______,_______; (2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元? (3)对于实数、,定义新运算:,其中、、是常数,等式右边是通常的加法和乘法运算.已知,,那么_______. 25.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当-1£x£ 1时,代数式在x=±1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1£x£1这个范围内,则称代数式是-1£x£1的“湘一代数式”. (1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”. (2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值. (3)若关于的代数式是的“湘一代数式”,求m的取值范围. 26.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒. (1)当时, 平方厘米;当时, 平方厘米; (2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围; (3)若的面积为平方厘米,直接写出值. 27.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数. 材料2:求方程的正整数解. 解:由已知得:……① 设(为整数),则……② 把②代入①得:. 所以方程组的解为 , 根据题意得:. 解不等式组得0<<.所以的整数解是1,2,3. 所以方程的正整数解是:,,. 根据以上材料回答下列问题: (1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号); (2)仿照上面的方法,求方程的正整数解; (3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程) 28.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖. (1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少? (2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒? 29.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”. (1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”. (2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值. 30.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B, (1)求a,b的值; (2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由. (3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3, ①求:∠CAB+∠ODB的度数; ②求:∠AED的度数. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)4;(2);(2)或. 【分析】 (1)根据非负数的性质易得,,然后根据三角形面积公式计算; (2)过作,根据平行线性质得,且,,所以;然后把 代入计算即可; (3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出; 当在轴负半轴上时,运用同样方法可计算出. 【详解】 解:(1), ,, ,, ,,, 的面积; (2)解:轴,, , 又∵, ∴, 过作,如图①, , , , ,分别平分,,即:,, ; (3)或. 解:①当在轴正半轴上时,如图②, 设, 过作轴,轴,轴, , ,解得, ②当在轴负半轴上时,如图③ ,解得, 综上所述:或. 【点睛】 本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键. 2.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)∵∠1=48°,∠BCA=90°, ∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°, ∵a∥b, ∴∠2=∠3=42°; (2)理由如下: 过点B作BD∥a.如图2所示: 则∠2+∠ABD=180°, ∵a∥b, ∴b∥BD, ∴∠1=∠DBC, ∴∠ABD=∠ABC-∠DBC=60°-∠1, ∴∠2+60°-∠1=180°, ∴∠2-∠1=120°; (3)∠1=∠2,理由如下: 过点C 作CP∥a,如图3所示: ∵AC平分∠BAM ∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°, 又∵a∥b, ∴CP∥b,∠1=∠BAM=60°, ∴∠PCA=∠CAM=30°, ∴∠BCP=∠BCA-∠PCA=90°-30°=60°, 又∵CP∥a, ∴∠2=∠BCP=60°, ∴∠1=∠2. 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 3.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 4.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 6.(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可; ②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解. 【详解】 解:(1)如图,由题意可知, ∴, ∵, ∴, , 由折叠可知. (2)①由题(1)可知 , ∵, , 再由折叠可知: , ; ②由可知:, 由(1)知, , 又的度数比的度数大, , , , . 【点睛】 此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键. 7.(1)a2=2,a3=-1,a4= (2)a2016•a2017•a2018= -1 (3)a33+a66+a99+…+a9999=-1 【分析】 (1)将a1=代入中即可求出a2,再将a2代入求出a3,同样求出a4即可. (2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017= ,a2018=2然后计算a2016•a2017•a2018的值; (3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果. 【详解】 (1)将a1=,代入,得 ; 将a2=2,代入,得; 将a3=-1,代入,得. (2)根据(1)的计算结果,从a1开始,每三个数一循环, 而2016÷3=672,则a2016=-1,a2017= ,a2018=2 所以,a2016•a2017•a2018=(-1)××2= -1 (3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入, a33+a66+a99+…+a9999 =(-1)3+(-1)6+(-1)9+…+(-1)99 =(-1)+1+(-1)+…(-1) =-1 【点睛】 此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律. 8.(1)48;(2)28 【分析】 (1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. (2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. 【详解】 解:(1)第一步:,,, , 能确定110592的立方根是个两位数. 第二步:的个位数是2,, 能确定110592的立方根的个位数是8. 第三步:如果划去110592后面的三位592得到数110, 而,则,可得, 由此能确定110592的立方根的十位数是4,因此110592的立方根是48; (2)第一步:,,, , 能确定21952的立方根是个两位数. 第二步:的个位数是2,, 能确定21952的立方根的个位数是8. 第三步:如果划去21952后面的三位952得到数21, 而,则,可得, 由此能确定21952的立方根的十位数是2,因此21952的立方根是28. 即, 故答案为:28. 【点睛】 本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度. 9.(1)两;(2)2,3;(3)24,-48. 【分析】 (1)根据题中所给的分析方法先求出这32768的立方根都是两位数; (2)继续分析求出个位数和十位数即可; (3)利用(1)(2)中材料中的过程进行分析可得结论. 【详解】 解:(1)由103=1000,1003=1000000, ∵1000<32768<100000, ∴10<<100, ∴是两位数; 故答案为:两; (2)∵只有个位数是2的立方数是个位数是8, ∴的个位上的数是2 划去32768后面的三位数768得到32, 因为33=27,43=64, ∵27<32<64, ∴30<<40. ∴的十位上的数是3. 故答案为:2,3; (3)由103=1000,1003=1000000, 1000<13824<1000000, ∴10<<100, ∴是两位数; ∵只有个位数是4的立方数是个位数是4, ∴的个位上的数是4 划去13824后面的三位数824得到13, 因为23=8,33=27, ∵8<13<27, ∴20<<30. ∴=24; 由103=1000,1003=1000000, 1000<110592<1000000, ∴10<<100, ∴是两位数; ∵只有个位数是8的立方数是个位数是2, ∴的个位上的数是8, 划去110592后面的三位数592得到110, 因为43=64,53=125, ∵64<110<125, ∴40<<50. ∴=-48; 故答案为:24,-48. 【点睛】 此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数. 10.(1)1022;(2)3066,2226;(3) 【分析】 (1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数; (2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数; (3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=,再比较大小即可. 【详解】 解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022; (2)设千位数字是x,百位数字是y,根据“依赖数”定义, 则有:十位数字是(2x﹣y),个位数字是(2x+y), 根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x), ∵21(4y+x)+(4y+x)被7除余3, ∴4y+x=3+7k,(k是非负整数) ∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去); ∴特色数是3066,2226. (3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=, 由(2)可知:特色数有3066和2226两个, 对于3066=613×5+14=61×50+24 ∵1×613-1×5>2×61-2×50, ∴3066取最小分解时:n=2,p=50,q=61 ∴F(3066)= 对于2226=89×25+14=65×34+24, ∵1×89-1×25>2×65-2×34, ∴2226取最小分解时:n=2,p=34,q=65 ∴F(2226)= ∵ 故所有“特色数”的F(m)的最大值为:. 【点睛】 此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键. 11.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 12.(1);;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【分析】 (1)根据题意,确定实数左侧第一个整数点所对应的数即得; (2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得. 【详解】 (1)∵ ∴ ∵ ∴ 故答案为:;. (2)①∵ ∴3.07公里需要2元 ∵ ∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元 ∴7.93公里所需费用为:(元) ∵ ∴公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元; ∴公里所需费用为:(元) 故答案为:2;3;6. ②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元; ∴乘坐24公里所需费用为:(元) ∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里 ∴7元可以乘坐的地铁最大里程为:(公里) ∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【点睛】 本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键. 13.(1),;(2),理由见解析;(3) 【分析】 (1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标; (2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出 QC、QG后即可得到Q点坐标; (3)过H作HF∥AB,过C作CM∥ED,则根据已知条件、平行线的性质和角的有关知识可以得到 . 【详解】 (1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(-1)=2, ∴平行四边形ABCD的高为2, ∴AD=BC=S四边形ABCD÷2=12÷2=6, ∴C点坐标为(-4+6,-1)即(2,-1),D点坐标为(-2+6,1)即(4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 下册 期末 压轴 试卷 答案 20
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文