人教版初一数学下册期末压轴题复习含解析(2).doc
《人教版初一数学下册期末压轴题复习含解析(2).doc》由会员分享,可在线阅读,更多相关《人教版初一数学下册期末压轴题复习含解析(2).doc(48页珍藏版)》请在咨信网上搜索。
1、一、解答题1如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(3,2)(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BCCD”移动若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:当t=秒时,点P的横坐标与纵坐标互为相反数;求点P在运动过程中的坐标,(用含t的式子表示,写出过程);当点P运动到CD上时,设CBP=x,PAD=y,BPA=z,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由2综合与实践背景阅读:在同一平面内,两条不重合的直线的位置
2、关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,则EBC 3已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF
3、上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)4问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB
4、、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数5已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数6如图,直线HDGE,点A在直线HD上,点
5、C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由7我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:例如:可分解成,或,因为,所以是的最佳分解,所以(1)填空: ; ;(2)一个两位正整数(,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有
6、的两位正整数;并求的最大值;(3)填空: ; ;8观察下列各式:(x1)(x+1)=x21(x1)(x2+x+1)=x31(x1)(x3+x2+x+1)=x41(1)根据以上规律,则(x1)(x6+x5+x4+x3+x2+x+1)=_(2)你能否由此归纳出一般性规律(x1)(xn+xn1+xn2+x+1)=_(3)根据以上规律求1+3+32+349+350的结果9阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即请你类比此方法计算:其中n为正整数10在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题(1)计算: ;(2)
7、若,则 ;(3)在数轴上,数的位置如下图所示,试化简:;(4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值11阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数
8、部分为b,求|ab|+的值(3)已知:9+x+y,其中x是整数,且0y1,求xy的相反数12给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)的值为_ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满
9、足“模二相加不变”.判断这三个数中哪些与“模二相加不变”,并说明理由;与“模二相加不变”的两位数有_个13如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m4|+0(1)求点B、点D的坐标(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x轴向右平移,如图2设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米当t1.5时,S 平方厘米;在2t4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米;在小正方形平移过程中,若S2,则小正方形平移的时间t为 秒(3)将大正方形固定不动,小正方形从图1中起始状
10、态沿x轴向右平移,在平移过程中,连接AD,过D点作DMAD交直线BC于M,DAx的角平分线所在直线和CMD的角平分线所在直线交于N(不考虑N点与A点重合的情形),求ANM的大小并说明理由14已知:ABCD,截线MN分别交AB、CD于点M、N(1)如图,点B在线段MN上,设EBM,DNM,且满足+(60)20,求BEM的度数;(2)如图,在(1)的条件下,射线DF平分CDE,且交线段BE的延长线于点F;请写出DEF与CDF之间的数量关系,并说明理由;(3)如图,当点P在射线NT上运动时,DCP与BMT的平分线交于点Q,则Q与CPM的比值为 (直接写出答案)15如图,已知,且满足.(1)求、两点的
11、坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.16阅读理解:定义:,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点例如,在图1中,点是的2倍点,但点不是的2倍点(1)特值尝试若,图1中,点_是的2倍点(填或)若,如图2,为数轴上两个点,点表示的数是,点表示的数是4,数_表示的点是的3倍点(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,
12、求所有符合条件的的值(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围(不必写出解答过程)17如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0)正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t4(1)点F的坐标为 ;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE
13、上,以1个单位长度/秒的速度从F到E运动连接AP,AE求t为何值时,AP所在直线垂直于x轴;求t为何值时,SSAPE18在平面直角坐标系中,点A(1,2),点B(a,b),且,点E(6,0),将线段AB向下平移m个单位(m0)得到线段CD,其中A、B的对应点分别为C、D(1)求点的坐标及三角形ABE的面积;(2)当线段CD与轴有公共点时,求的取值范围;(3)设三角形CDE的面积为,当时,求的取值范围19某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付
14、 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案20新定义,若关于,的二元一次方程组的解是,关于,的二元一次方程组的解是,且满足,则称方程组的解是方程组的模糊解关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是_21学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,
15、且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由22已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,轴,且、满足(1)则_;_;_;(2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是_23某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元
16、,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?24如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动若两点同时出发,其中一点到达终点时,运动停止()直接写出三个点的坐标;()设两点运动的时间为秒,用含的式子表
17、示运动过程中三角形的面积;()当三角形的面积的范围小于16时,求运动的时间的范围25在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为点M的“控变点”(1)点A(1,2)的“控变点”B的坐标为 ;(2)已知点C(m,1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围26已知关于x、y的二元一次方程(1)若方程组的解x、y满足,求a的取值范围;(2)求代数式的值27如图,数轴上两点
18、A、B对应的数分别是1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)在2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k使得方程组中的x,y均为连动数,求k所有可能的取值;(3)若关于x的不等式组的解集中恰好有4个连动整数,求这4个连动整数的值及a的取值范围28在平面直角坐标系中,点A,B的坐标分别为(1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD(1)求点C,D的坐标
19、及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使SPAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出OPC与PCD、POB的数量关系29我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环两灯交叉照射且不间断巡视若灯转动的速度是度/秒,灯转动的速度是度/秒,且, 满足若这一带江水两岸河堤相互平行,即,且
20、根据相关信息,解答下列问题(1)_,_(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射线到达之前,灯转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围30规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知,则是隐线的亮点的是 ;(2) 设是隐线的两个亮点,求方程中的最小的正整数解;(3)已知是实数, 且,若是隐线的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初一 数学 下册 期末 压轴 复习 解析
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。