上海时代中学八年级上册期末数学试卷含答案.doc
《上海时代中学八年级上册期末数学试卷含答案.doc》由会员分享,可在线阅读,更多相关《上海时代中学八年级上册期末数学试卷含答案.doc(18页珍藏版)》请在咨信网上搜索。
上海时代中学八年级上册期末数学试卷含答案 一、选择题 1、下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有( )个. A.1个 B.2个 C.3个 D.4个 2、芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食品和药物,得到广泛的使用.经测算,一粒芝麻的质量约为0.00000201kg,将一粒芝麻的质量用科学记数法表示均为( ) A. B. C. D. 3、计算(a2+ab)÷a的结果是( ) A.a+b B.a2+b C.a+ab D.a3+a2b 4、要使分式有意义,则x的取值应满足( ) A. B. C. D. 5、下列由左边到右边的变形,是因式分解的是( ) A. B. C. D. 6、下列各式中,正确的是( ) A. B. C. D. 7、如图,,下列条件不能判定△ACD与△BCD全等的是( ) A. B. C. D.点O是AB的中点 8、关于x的分式方程有增根,则m的值是( ) A.1 B.2 C. D. 9、如果将一副三角板按如图的方式叠放,则∠1的度数为( ) A.105° B.120° C.75° D.45° 二、填空题 10、如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有( ) A.①②④ B.①②③ C.①②④⑤ D.①②③⑤ 11、分式的值为0,则x=________. 12、蝴蝶标本可以近似地看作是轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果点B的坐标是,那么它关于y轴对称的点A的坐标是________. 13、已知,则的值是_____. 14、已知,m,n为正整数,则=______.(用含a,b的式子表示) 15、如图,在中,,点P在的平分线上,将沿对折,使点B恰好落在边上的点D处,连接,若,则______. 16、如果是完全平方式,则__. 17、已知,则________. 18、如图,在△ABC中,AB=AC=24厘米,∠B=∠C ,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为________厘米/秒时,能够在某一时刻使△BPD与△CQP全等. 三、解答题 19、因式分解: (1); (2) 20、先化简,再求值:,其中. 21、如图,D是AB边上一点,DF交AC于点E,DE=FE,AE=CE.求证:FC//AB. 22、,点,分别在射线、上运动(不与点重合). (1)如图①,、分别是和的平分线,随着点、点的运动, ; (2)如图②,若是的平分线,的反向延长线与的平分线交于点. ①若,则 ; ②随着点,的运动,的大小是否会变化?如果不变,求的度数;如果变化,请说明理由. 23、一位沙漠吉普爱好者驾车从甲站到乙站与大部队汇合,出发2小时后车子出了点故障,修车用去半小时时间,为了弥补耽搁的时间,他将车速增加到原来的1.6倍,结果按时到达,已知甲、乙两站相距100千米,求他原来的行驶速度. 24、方法探究: 已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”. 问题解决: (1)对于二次多项式,我们把x= 代入该式,会发现成立; (2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值; (3)对于多项式,用“试根法”分解因式. 25、在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接. 当点在线段上时, ①若点与点重合时,请说明线段; ②如图2,若点不与点重合,请说明; 当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明). 一、选择题 1、A 【解析】A 【分析】根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案. 【详解】解:第一个图不是轴对称图形,不是中心对称图形,故不合题意; 第二个图形是中心对称图形,也是轴对称图形,故符合题意; 第三个图形不是中心对称图形,是轴对称图形,故不合题意; 第四个图形不是中心对称图形,是轴对称图形,故不合题意. 故选A. 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2、C 【解析】C 【分析】根据2前面有6个0得到指数为-6,表示为科学记数法即可. 【详解】解:0.00000201=2.01×10-6kg, 故选:C. 【点睛】本题考查利用科学记数法把绝对值较小的数表示为a×10-n形式,其中1≤|a|<10,解题的关键是掌握n等于原数第一个非0的数字前面0的个数. 3、A 【解析】A 【分析】利用多项式除以单项式的运算法则进行计算即可. 【详解】解:(a2+ab)÷a=a+b, 故选:A. 【点睛】本题考查了多项式除以单项式,正确的计算是解题的关键. 4、A 【解析】A 【分析】若使分式有意义,则分母不为零,依此进行计算即可. 【详解】解:若分式有意义,则x+2≠0, 解得:x≠-2, 故选:A. 【点睛】本题主要考查的是分式有意义的条件,掌握分式的基础性质是解题的关键. 5、A 【解析】A 【分析】根据因式分解的定义,因式分解是把多项式写成几个整式积的形式,对各选项分析判断后利用排除法求解. 【详解】解:A.原式符合因式分解的定义,是因式分解,故本选项符合题意. B.原式右边不是整式积的形式,不是因式分解,故本选项不符合题意; C.原式右边不是整式积的形式,不是因式分解,故本选项不符合题意; D.,选项因式分解错误,不符合题意; 故选:A. 【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解的定义及方法是解题关键. 6、D 【解析】D 【分析】根据分式的性质,即可一一判定. 【详解】解:A.,故该选项错误; B.当时,,当,此式无意义,故该选项错误; C. ,故该选项错误; D. ,故该选项正确; 故选:D. 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或(整式),分式的值不变,熟练掌握和运用分式的性质是解决本题的关键. 7、C 【解析】C 【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵,CD=CD, ∴A、可以利用边边边判定△ACD与△BCD全等,故本选项不符合题意; B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意; C、不能判定△ACD与△BCD全等,故本选项符合题意; D、因为点O是AB的中点,所以,可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意; 故选:C 【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键. 8、B 【解析】B 【分析】根据题意可得x=1,然后代入整式方程中进行计算,即可解答. 【详解】解:, m-2=3(x-1), 解得:x=, ∵分式方程有增根, ∴x=1, 把x=1代入x=中, 1=, 解得:m=2, 故选:B. 【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键. 9、A 【解析】A 【分析】根据三角形的外角等于与它不相邻的两个内角的和计算. 【详解】解:由三角形的外角性质可得:, 故选:A. 【点睛】本题考查的是三角形的外角性质,解题的关键是掌握三角形的外角等于与它不相邻的两个内角的和. 二、填空题 10、D 【解析】D 【详解】试题【解析】①利用公式:∠CDA=∠ABC=45°,①正确; ②如图:延长GD与AC交于点P', 由三线合一可知CG=CP', ∵∠ADC=45°,DG⊥CF, ∴∠EDA=∠CDA=45°, ∴∠ADP=∠ADF, ∴△ADP'≌△ADF(ASA), ∴AF=AP'=AC+CP'=AC+CG,故②正确; ③如图: ∵∠EDA=∠CDA, ∠CAD=∠EAD, 从而△CAD≌△EAD, 故DC=DE,③正确; ④∵BF⊥CG,GD⊥CF, ∴E为△CGF垂心, ∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形, ∴HF=CH=EH+CE=GH+CE=GH+CD,故④错误; ⑤如图:作ME⊥CE交CF于点M, 则△CEM为等腰直角三角形,从而CD=DM,CM=2CD,EM=EC, ∵∠MFE=∠CGE, ∠CEG=∠EMF=135°, ∴△EMF≌△CEG(AAS), ∴GE=MF, ∴CF=CM+MF=2CD+GE, 故⑤正确; 故选D 点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀. 11、1 【分析】根据分式值为0以及分式有意义的条件求解即可. 【详解】解:分式的值为0, ,且 故答案为: 【点睛】本题考查了分式的值为0的条件,掌握分式的值为0即分子为0,分母不为0是解题的关键. 12、 【分析】根据关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,直接求解即可. 【详解】解:关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等, ∴, 故答案为: . 【点睛】题目主要考查坐标系中对称点的特点,熟练掌握关于坐标轴对称的点的特点是解题关键. 13、2 【分析】根据分式的运算法则即可得. 【详解】解:可化为, 则, 故答案为:1、 【点睛】本题考查了分式的减法,熟练掌握分式的运算法则是解题关键.异分母分式相加减,先通分,化成同分母分式相加减;同分母分式相加减,分母不变,分子相加减. 14、 【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可. 【详解】解:∵, ∴, ∴. 故答案为: 【点睛】本题考查幂的乘方公式和同底数幂的除法.熟练掌握公式,并能逆运用是解题关键. 15、【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案. 【详解】解:如下图所所示,连接, ∵点P在的平 【解析】 【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案. 【详解】解:如下图所所示,连接, ∵点P在的平分线上, ∴, ∵, ∴, ∵折叠, ∴, ∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴, ∵, ∵ , ∴, ∴, ∴, ∴, ∵ ∴, ∴. 【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明. 16、±6 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值. 【详解】解:, , 解得. 故答案为:. 【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键. 【解析】±6 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值. 【详解】解:, , 解得. 故答案为:. 【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键. 17、##4.5##4 【分析】将两边同时平方,可得出含的式子,即可求出结果. 【详解】解:∵ ∴ 即: ∵ ∴ ∴ 故答案为: 【点睛】本题考查代数式的求值,灵活运用完全平方公式是解题的关键. 【解析】##4.5##4 【分析】将两边同时平方,可得出含的式子,即可求出结果. 【详解】解:∵ ∴ 即: ∵ ∴ ∴ 故答案为: 【点睛】本题考查代数式的求值,灵活运用完全平方公式是解题的关键. 18、4或6 【分析】设点Q的速度为x,则运动t秒时,CQ=xt,分两种情况讨论①当△BPD≌△CQP时,②当△BPD≌△CPQ时,根据其运动情况表示出线段的数量关系,根据三角形全等的性质计算得到答案即可 【解析】4或6 【分析】设点Q的速度为x,则运动t秒时,CQ=xt,分两种情况讨论①当△BPD≌△CQP时,②当△BPD≌△CPQ时,根据其运动情况表示出线段的数量关系,根据三角形全等的性质计算得到答案即可. 【详解】解:设点Q的速度为x,则运动t秒时,CQ=xt, ∵P点的速度为4,BC=16 ∴BP=4t,PC=(16-4t) 又∵AB=AC=24,点D为AB的中点 ∴BD=AB=12 ∵∠B=∠C ∴运动t秒时,△BPD与△CQP全等共有两种情况 ①当△BPD≌△CQP时, 则有BD=CP,BP=CQ 即12=16-4t,4t=xt 即t=1 ∴由4t=xt可知,x=3、 ②当△BPD≌△CPQ时, 则有BD=CQ,BP=CP 即12=xt,4t=16-4t ∴t=2,x=5、 综合①②可知速度为4或5、 故答案为:4或5、 【点睛】本题考查了三角形全等的性质,分类讨论是解题的关键. 三、解答题 19、(1) (2) 【分析】(1)先提取公因式,再运用平方差公式分解因式即可; (2)先提取公因式,再运用完全平方公式分解因式即可. (1) 解: ; (2) . 【点睛】本题考查因式分解——提 【解析】(1) (2) 【分析】(1)先提取公因式,再运用平方差公式分解因式即可; (2)先提取公因式,再运用完全平方公式分解因式即可. (1) 解: ; (2) . 【点睛】本题考查因式分解——提公因式法和公式法综合,熟练掌握因式分解的方法是解题的关键. 20、, 【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可. 【详解】解: 当时,即 原式 . 【解析】, 【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可. 【详解】解: 当时,即 原式 . 【点睛】本题考查分式的混合运算,涉及完全平方公式、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键. 21、见解析 【分析】由DE=FE,AE=CE,易证得△ADE≌△CFE,即可得∠A=∠ECF,则可证得FCAB. 【详解】证明:在△ADE和△CFE中, , ∴△ADE≌△CFE(SAS), ∴∠A=∠ 【解析】见解析 【分析】由DE=FE,AE=CE,易证得△ADE≌△CFE,即可得∠A=∠ECF,则可证得FCAB. 【详解】证明:在△ADE和△CFE中, , ∴△ADE≌△CFE(SAS), ∴∠A=∠ECF, ∴FC//AB. 【点睛】此题考查了全等三角形的判定与性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用. 22、(1)135 (2)①45;②不变,45° 【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论; (2 )①根据三角形的内角和定理和角平分线的定义即可得到结论; ②由①的思路可得结论 【解析】(1)135 (2)①45;②不变,45° 【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论; (2 )①根据三角形的内角和定理和角平分线的定义即可得到结论; ②由①的思路可得结论. (1) 解:( 1)直线与直线垂直相交于, , , 、分别是和角的平分线, ,, , ; 故答案为:135; (2) ①,, , , 是的平分线, , 平分, , , 故答案为:45; ②的度数不随、的移动而发生变化, 设, 平分, , , , 平分, , , . 【点睛】本题考查了三角形的内角和定理,角平分线的定义,熟练掌握三角形的内角和定理是解题的关键. 23、他原来行驶速度为30km/h 【分析】设这个人原来行驶的速度为xkm/h,根据题意可得等量关系为:原计划用的时间=2+0.5+后来走剩余路程所用时间,把相应数值代入即可求解. 【详解】解:设这个人原 【解析】他原来行驶速度为30km/h 【分析】设这个人原来行驶的速度为xkm/h,根据题意可得等量关系为:原计划用的时间=2+0.5+后来走剩余路程所用时间,把相应数值代入即可求解. 【详解】解:设这个人原来行驶的速度为xkm/h,根据题意得, 解得 经检验是原方程的解 答:他原来的行驶速度为30km/h. 【点睛】本题考查了分式方程的应用,根据题意找准等量关系是解题的关键. 24、(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; (3)多项式 【解析】(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; (3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可. (1) 解:当x=±2时,x2-4=0, 故答案为:±2; (2) 解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b), ∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b, ∴1-a=1,b=-3, ∴a=0,b=-3; (3) 解:当x=2时,x3+4x2-3x-18=8+16-6-18=0, ∴多项式有因式(x-2), 设另一个因式为(x2+ax+b), ∴x3+4x2-3x-18=(x-2)(x2+ax+b), ∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b, ∴a-2=4,2b=18, ∴a=6,b=9, ∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)1、 【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键. 25、(1)①证明见解析;②证明见解析;(2)BF=AE-CD 【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到 【解析】(1)①证明见解析;②证明见解析;(2)BF=AE-CD 【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论; (2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论. 【详解】(1)①证明: ,且E与A重合, 是等边三角形 在和中 ②如图2,过点A做AG∥EF交BC于点G, ∵∠ADB=60° DE=DF ∴△DEF为等边三角形 ∵AG∥EF ∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60° ∴∠DAG=∠AGD ∴DA=DG ∴DA-DE=DG-DF,即AE=GF 由①易证△AGB≌△ADC ∴BG=CD ∴BF=BG+GF=CD+AE (2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G, 由(1)可知,AE=GF,DC=BG, 故. 【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 时代 中学 年级 上册 期末 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文