2023自贡市数学八年级上册期末试卷含答案.doc
《2023自贡市数学八年级上册期末试卷含答案.doc》由会员分享,可在线阅读,更多相关《2023自贡市数学八年级上册期末试卷含答案.doc(19页珍藏版)》请在咨信网上搜索。
2023自贡市数学八年级上册期末试卷含答案 一、选择题 1、我国新能源汽车产业发展取得了明显成效,逐渐进入市场化驱动阶段.下列新能源汽车图标中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 2、一张纸的厚度约为0.00000637m,则0.00000637用科学记数法可以表示为( ) A. B. C. D. 3、下列运算中正确的是( ) A.(﹣a)4=a4 B.a2•a3=a4 C.a2+a3=a5 D.(a2)3=a5 4、要使分式有意义,则x的取值应满足( ) A. B. C. D. 5、下列从左到右的变形,属于因式分解的是( ) A. B. C. D. 6、下列计算错误的是( ) A. B. C. D. 7、如图,已知,那么添加下列一个条件后,仍无法判定的是 ( ) A. B. C. D. 8、若关于x的分式方程的解为x=3,则常数m的值为( ) A.6 B.﹣1 C.0 D.﹣2 9、在中,,,则,的度数依次是( ) A., B., C., D., 二、填空题 10、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为7、其中正确的结论是( ) A.①②③ B.①③ C.①③④ D.②③④ 11、若分式的值为零,则x的值为_____. 12、若点P(2,a)关于x轴的对称点为Q(b,1),则(a+b)3的值是 _____. 13、已知=1,则(a﹣1)(b+1)=_____. 14、计算_____. 15、如图,四边形ABCD中,AD∥BC,AC平分∠BAD,∠ABC=60°,E为AD上一点,AE=2,DE=4,P为AC 上一点,则△PDE周长的最小值为_______. 16、若为常数,要使成为完全平方式,那么的值是__________. 17、如图,两个正方形的边长分别为a、b,如果a+b=10,ab=18,则阴影部分的面积为 _____. 18、如图,已知在四边形中,厘米,厘米,厘米,,点为线段的中点.如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为___________厘米/秒时,能够使与以,,三点所构成的三角形全等. 三、解答题 19、分解因式: (1); (2) 20、先化简,再求值:÷-(+1),其中,x=. 21、如图所示,,,,求证:. 22、Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °; (2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系? (3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由. 23、列方程解应用题: 某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元. (1)请求出第一批每只书包的进价; (2)该商店第一批和第二批分别购进了多少只书包; (3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元? 24、已知,如图1,我们在2018年某月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”)该十字星的十字差为,再选择其它位置的十字星,可以发现“十字差”仍为47、 (1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为 . (2)若将正整数依次填入6列的长方形数表中,不同位置十字星的“十字差”是一个定值吗?如果是,请求出这个定值;如果不是,请说明理由. (3)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数有关的定值,请用表示出这个定值,并证明你的结论. 25、如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 一、选择题 1、B 【解析】B 【分析】直接利用轴对称图形的性质和中心对称图形的性质分别分析得出答案. 【详解】A.这个选项的图形是轴对称图形,不是中心对称图形,故这个选项不合题意; B.这个选项的图形既是轴对称图形,又是中心对称图形,故这个选项符合题意; C.这个选项的图形既不是轴对称图形,又不是中心对称图形,故这个选项不合题意; D.这个选项的图形既不是轴对称图形,又不是中心对称图形,故这个选项不合题意; 故答案为:B. 【点睛】本题主要考查了轴对称图形和中心对称图形的概念,正确掌握相关定义是解本题的关键. 2、C 【解析】C 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数. 【详解】解:0.00000637=6.37×10-5、 故选:C. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3、A 【解析】A 【分析】根据幂的乘方运算法则,根据同底数幂的乘法运算法则,根据合并同类项运算法则对选项进行判断. 【详解】解:A、,正确,故此选项符合题意; B、,故此选项不符合题意; C、与不是同类项,不能合并计算,故此选项不符合题意; D、,故此选项不符合题意; 故选:A. 【点睛】本题考查整式的运算,解题的关键是掌握幂的乘方,同底数幂的乘法(底数不变,指数相加),以及合并同类项的运算法则. 4、B 【解析】B 【分析】利用分式有意义则分母不等于零,即可得出答案. 【详解】解:要使分式有意义,则x+2≠0, 解得:x≠-1、 故选:B. 【点睛】此题主要考查了分式有意义的条件,正确掌握分式有意义的条件是解题关键. 5、B 【解析】B 【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案. 【详解】解:A、是整式的乘法,故A不是因式分解,不符合题意; B、提取公因式分解因式,故B正确,符合题意. C、没转化成整式积的形式,故C不是因式分解,不符合题意; D、是整式的乘法,故D不是因式分解,不符合题意. 故选:B. 【点睛】本题考查了因式分解的定义,掌握因式分解就是把多项式转化成几个整式积的形式是解题关键. 6、D 【解析】D 【分析】分别把各选项根据分式的基本性质和分式的运算法则计算得到结果即可作出判断. 【详解】解:A. ,故选项A计算正确,不符合题意; B. ,故选项B计算正确,不符合题意; C. ,故选项C计算正确,不符合题意; D. ,故选项D运算错误,符合题意; 故选:D. 【点睛】本题主要考查了分式的基本性质和分式的运算法则,熟练掌握基本性质和运算法则是解答本题的关键. 7、C 【解析】C 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BAC=∠DCA后则不能. 【详解】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意; B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意; C、添加∠BAC=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意; D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意; 故选:C 【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 8、A 【解析】A 【分析】先将分式方程化为整式方程,再将x=3代入整式方程中求解m值即可. 【详解】解:去分母,得, ∴m=2x, 将x=3代入,得 , 故选:A. 【点睛】本题考查分式方程的解以及解分式方程,理解分式方程的解是解答的关键. 9、C 【解析】C 【分析】根据三角形的内角和等于180°可求解∠ABC的度数;利用三角形外角的性质可求解∠ABE的度数. 【详解】解:在△ABC中,∠C=90°,∠A=54.97°, ∴根据三角形内角和定理可得∠ABC=180°−∠C−∠A=180°−90°−54.97°=35.03°, 根据三角形外角性质可得∠ABE=∠A+∠C=54.97°+90°=144.97°, 故选:C. 【点睛】本题主要考查三角形的内角和定理,三角形外角的性质,掌握三角形的内角和定理及外角的性质是解题的关键. 二、填空题 10、C 【解析】C 【分析】①连接CF,构造全等三角形,证明△ADF≌△CEF即可. ②通过①可得△DFE是等腰直角三角形,则斜边DE=DF,求得DF的最小值即可得到DE的最小值. ③通过证明△ADF≌△CEF,进行等面积代换即可得出. ④通过结论③,换角度将四边形CDFE的面积分为△CDE与△DEF,令△DEF的面积最小即可. 【详解】①连接CF. ∵△ABC为等腰直角三角形, ∴∠FCB=∠A=45°,CF=AF=FB, ∵AD=CE, ∴△ADF≌△CEF, ∴EF=DF,∠CFE=∠AFD, ∵∠AFD+∠CFD=90° ∴∠CFE+∠CFD=∠EFD=90°, ∴△EDF是等腰直角三角形, 故本选项正确; ②∵△DEF是等腰直角三角形, ∴当DE最小时,DF也最小, 即当DF⊥AC时,DE最小,此时DF=BC=4, ∴DE=DF=, 故本选项错误; ③∵△ADF≌△CEF, ∴S△CEF=S△ADF, ∴S四边形CDFE=S△DCF+S△CEF=S△DCF+S△ADF=S△ACF=S△ABC 故本选项正确; ④当△CED面积最大时,由③知,此时△DEF的面积最小,此时, S△CED=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8, 故本选项正确; 综上所述正确的有①③④. 故选:C. 【点睛】本题旨在考查等腰直角三角形的性质,全等三角形的构造与应用,并结合动图和最值问题,熟练掌握等腰三角形的性质和全等三角形,应用数形结合的数学思维是解答关键. 11、﹣3 【分析】直接利用分式为零的条件得出答案. 【详解】解:∵分式的值为零, ∴x+3=0, 解得:x=﹣3,此时满足分母不为零, 故答案为:﹣2、 【点睛】本题考查分式为零的条件,掌握分式为零的条件是解题关键. 12、1 【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出(a+b)2、 【详解】解:∵点P(2,a)关于x轴的对称点为Q(b,1), ∴a=,b=2, ∴(a+b)3=1. 故答案为1. 【点睛】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单. 13、﹣1 【分析】根据分式的加减混合运算法则把已知式子变形,根据多项式乘多项式的运算法则把所求的式子化简,代入计算即可. 【详解】解:∵=1, ∴b﹣a=ab, 则(a﹣1)(b+1) =ab﹣b+a﹣1 =ab﹣(b﹣a)﹣1 =﹣1, 故答案为:﹣1. 【点睛】本题考查的是分式的加减、多项式乘多项式,掌握分式的加减混合运算法则是解题的关键. 14、 【分析】利用幂的运算 原式变为,即可计算. 【详解】由积的乘方有:, , , . 【点睛】本题考查积的乘方:,属于基础题. 15、【分析】作出点E关于AC的对称点,确定△PDE周长最小时P的位置,过F作AD垂线,构造RtAFG和RtDFG,即可得出结果. 【详解】如图,作点E关于AC的对称点F,此时PF=PE,连接FD交AC 【解析】 【分析】作出点E关于AC的对称点,确定△PDE周长最小时P的位置,过F作AD垂线,构造RtAFG和RtDFG,即可得出结果. 【详解】如图,作点E关于AC的对称点F,此时PF=PE,连接FD交AC于点P, ∴△PDE周长为:DE+PE+PD=DE+PF+PD ∵DE=4固定,△PDE周长最小及PF+PD最小,故P,D,F三点共线 ∵AC平分∠BAD,∴ ∵, ∴,即 ∵,为等边三角形 ∴ ∴ ∵AF=AE=2, ∴AG=1,FG=,GD=7 ∴ △PDE周长为:DE+PE+PD=DE+PF+PD=DE+DF=4+ 【点睛】掌握路径最短问题的求法,平行线+角平分线的作用,熟练使用勾股定理求解线段长度是解题关键. 16、【分析】根据完全平方公式计算即可. 【详解】∵成为完全平方式, ∴ ∴ ∴ 故答案为:. 【点睛】本题考查了完全平方公式,正确掌握完全平方公式是本题的关键. 【解析】 【分析】根据完全平方公式计算即可. 【详解】∵成为完全平方式, ∴ ∴ ∴ 故答案为:. 【点睛】本题考查了完全平方公式,正确掌握完全平方公式是本题的关键. 17、23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的 【解析】23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的面积 = = = =23, 故答案为:22、 【点睛】此题考查了完全平方公式的变形计算,正确掌握完全平方公式法则是解题的关键. 18、3或 【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度. 【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t, ∵∠B=∠C, ∴①当BE=CP=6,BP= 【解析】3或 【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度. 【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t, ∵∠B=∠C, ∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等, 此时,6=8﹣3t, 解得t, ∴BP=CQ=2, 此时,点Q的运动速度为23厘米/秒; ②当BE=CQ=6,BP=CP时,△BPE与△CQP全等, 此时,3t=8﹣3t, 解得t, ∴点Q的运动速度为6厘米/秒; 故答案为:3或. 【点睛】本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等. 三、解答题 19、(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛】此题主要考查了提取公 【解析】(1) (2) 【分析】(1)利用提取公因式法,即可分解因式; (2)首先进行分组,再利用完全平方公式和平方差公式,即可分解因式. (1) 解: (2) 解: 【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差和完全平方公式是解题关键. 20、, 【分析】先根据分式的混合运算的顺序,化简分式,再代入x值计算. 【详解】解: = = = =, 当x=时,原式=. 【点睛】本题考查了分式的化简求值,先化简后代入计算是解决此题的关键. 【解析】, 【分析】先根据分式的混合运算的顺序,化简分式,再代入x值计算. 【详解】解: = = = =, 当x=时,原式=. 【点睛】本题考查了分式的化简求值,先化简后代入计算是解决此题的关键. 21、见解析 【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC. 【详解】证明:∵, ∴. ∴, 在与中 , ∴ (SAS). 【点睛】本题考查了三角形全等的 【解析】见解析 【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC. 【详解】证明:∵, ∴. ∴, 在与中 , ∴ (SAS). 【点睛】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 22、(1)140;(2)∠1+∠2=90°+∠α;(3)∠1﹣∠2=∠α﹣90°.理由见解析. 【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2 【解析】(1)140;(2)∠1+∠2=90°+∠α;(3)∠1﹣∠2=∠α﹣90°.理由见解析. 【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可; (2)连接PC,方法与(1)相同; (3)利用三角形的一个外角等于与它不相邻的两个内角的和讨论求解即可. 【详解】解:(1)如图,连接PC, 由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE, ∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠ACB, ∵∠DPE=∠α=50°,∠ACB=90°, ∴∠1+∠2=50°+90°=140°, 故答案为:140 (2)连接PC, 由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE, ∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠ACB, ∵∠ACB=90°,∠DPE=∠α, ∴∠1+∠2=90°+∠α. (3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α, ∴∠2﹣∠1=90°+∠α; 如图2,∠α=0°,∠2=∠1+90°; 如图3,∠2=∠1﹣∠α+∠C, ∴∠1﹣∠2=∠α﹣90°. 【点睛】此题主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,∠α转化到一个三角形或四边形中. 23、(1)20元 (2)第一批购进100只,第二批购进300只 (3)3400元 【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量是第一批购进数量的3倍列方 【解析】(1)20元 (2)第一批购进100只,第二批购进300只 (3)3400元 【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量是第一批购进数量的3倍列方程求解即可; (2)依据书包的数量=总价÷单价求解即可; (3)先求得全部卖出后的总售价,然后用总售价-总进价可求得获得的利润. (1) 解:设第一批书包的单价为x元. 根据题意得:, 解得:x=19、 经检验:x=20是分式方程的解. 答:第一批每只书包的进价是20元. (2) 第一批进货的数量=2000÷20=100个; 第二批的进货的数量=3×100=300个. (3) 30×(100+300)-2000-6600=3400元. 【点睛】本题主要考查的是分式方程的应用,根据第二所购书包的数量是第一批购进数量的3倍列出关于x的方程是解题的关键. 24、(1)24;(2)是,这个定值是35,理由见解析;(3)定值为,证明见解析. 【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值; (2)设十字星中心的数为x,则十字星左右两数分别为x- 【解析】(1)24;(2)是,这个定值是35,理由见解析;(3)定值为,证明见解析. 【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值; (2)设十字星中心的数为x,则十字星左右两数分别为x-1,x+1,上下两数分别为x-6,x+6,进而表示出十字差,化简即可得证; (3)设十字星中心的数为y,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证. 【详解】解:(1)根据题意得:, 故答案为:24; (2)是,这个定值是34、理由如下: 设十字星中心的数为,则十字星左右两数分别为,,上下两数分别为,, 十字差为:. 故不同位置十字星的“十字差”是一个定值,这个定值为35; (3)定值为,证明如下: 设设十字星中心的数为y,则十字星左右两数分别为,,上下两数分别为,, 十字差为:, 故这个定值为. 【点睛】此题考查了整式运算的实际应用,正确理解题意以及熟练掌握运算法则是解本题的关键. 25、(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运 【解析】(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 自贡市 数学 年级 上册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文