2023年人教版中学七7年级下册数学期末质量监测题含答案完整.doc
《2023年人教版中学七7年级下册数学期末质量监测题含答案完整.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末质量监测题含答案完整.doc(23页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末质量监测题含答案完整 一、选择题 1.下列各图中,∠1和∠2为同旁内角的是( ) A. B. C. D. 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.已知点P的坐标为,则点P在第( )象限. A.一 B.二 C.三 D.四 4.下列命题是假命题的是( ). A.同一平面内,两直线不相交就平行 B.对顶角相等 C.互为邻补角的两角和为180° D.相等的两个角一定是对顶角 5.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于( ) A.30° B.25° C.35° D.40° 6.下列各式正确的是( ) A. B. C. D. 7.如图,在中,∠AEC=50°,平分,则的度数为( ) A.25° B.30° C.35° D.40° 8.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是( ) A.﹣5 B.3 C.﹣1 D.5 九、填空题 9.______. 十、填空题 10.点P(﹣2,3)关于x轴的对称点的坐标是_____. 十一、填空题 11.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____. 十二、填空题 12.如图,,设,那么,,的关系式______. 十三、填空题 13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______. 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的值: (1);(2);(3). 十九、解答题 19.如图,已知:,. 求证:. 证明:∵(已知), ∴∠______=∠______(______). ∵(______), ∴∠______(等量代换). ∴(______). 二十、解答题 20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′ (1)请画出平移后的三角形A′B′O′. (2)写出点A′、O′的坐标. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为的整数部分是,将这个数减去其整数部分,差就是小数部分. 根据以上内容,请解答: 已知,其中是整数,,求的值. 二十二、解答题 22.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 二十三、解答题 23.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 二十四、解答题 24.已知:如图1,,点,分别为,上一点. (1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明). 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同旁内角的概念逐一判断可得. 【详解】 解:A、∠1与∠2是同位角,此选项不符合题意; B、此图形中∠1与∠2不构成直接关系,此选项不符合题意; C、∠1与∠2是同旁内角,此选项符合题意; D、此图形中∠1与∠2不构成直接关系,此选项不符合题意; 故选C. 【点睛】 本题主要考查了同旁内角的概念,解题的关键在于能够熟练掌握同旁内角的概念. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.B 【分析】 直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案. 【详解】 解:∵点P的坐标为P(-2,4), ∴点P在第二象限. 故选:B. 【点睛】 此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键. 4.D 【分析】 根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可. 【详解】 解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意; B:对顶角相等,选项正确,不符合题意; C:互为邻补角的两角和为180°,选项正确,不符合题意; D:相等的两个角不一定是对顶角,选项错误,符合题意; 故答案选D. 【点睛】 此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键. 5.B 【分析】 根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可. 【详解】 解:∵AB∥CD,∠3=130°, ∴∠GAB=∠3=130°, ∵∠BAE+∠GAB=180°, ∴∠BAE=180°﹣∠GAB=180°﹣130°=50°, ∵∠1=∠2, ∴∠2=∠BAE=×50°=25°. 故选:B. 【点睛】 此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键. 6.B 【分析】 根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可. 【详解】 解:A.,故本选项不合题意; B.,正确; C.,故本选项不合题意; D.,故本选项不合题意. 故选:B. 【点睛】 本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键. 7.A 【分析】 根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠BCE=∠BCD =∠ECD=25°,由此即可求解. 【详解】 解:∵AB∥CD, ∴∠ABC=∠BCD,∠ECD=∠AEC=50° ∵CB平分∠DCE, ∴∠BCE=∠BCD =∠ECD=25° ∠ABC=∠BCD=25° 故选A. 【点睛】 本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键. 8.C 【分析】 列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论. 【 解析:C 【分析】 列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论. 【详解】 解:∵A2021的坐标为(﹣3,2), 根据题意可知: A2020的坐标为(﹣3,﹣2), A2019的坐标为(1,﹣2), A2018的坐标为(1,2), A2017的坐标为(﹣3,2), … ∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数). ∵2021=505×4•••1, ∵A2021的坐标为(﹣3,2), ∴A1(﹣3,2), ∴x+y=﹣3+2=﹣1. 故选:C. 【点睛】 本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键. 九、填空题 9.10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 解析:10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 十、填空题 10.(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为 解析:(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为(﹣2,﹣3). 【点睛】 本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到. 十一、填空题 11.4 【分析】 根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案. 【详解】 解:过点P作MN⊥AD, ∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A 解析:4 【分析】 根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案. 【详解】 解:过点P作MN⊥AD, ∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC, ∴PM=PE=2,PE=PN=2, ∴MN=2+2=4. 故答案为4. 十二、填空题 12.【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平 解析: 【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键; 十三、填空题 13.113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定 解析:113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°. 【详解】 解:如图,设∠B′FE=x, ∵纸条沿EF折叠, ∴∠BFE=∠B′FE=x,∠AEF=∠A′EF, ∴∠BFC=∠BFE﹣∠CFE=x﹣21°, ∵纸条沿BF折叠, ∴∠C′FB=∠BFC=x﹣21°, 而∠B′FE+∠BFE+∠C′FE=180°, ∴x+x+x﹣21°=180°,解得x=67°, ∵A′D′∥B′C′, ∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°, ∴∠AEF=113°. 故答案为113°. 【点睛】 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 十七、解答题 17.(1) 3;(2) 2 【解析】 【分析】 (1)原式利用平方根及立方根的定义化简,计算即可得到结果; (2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果. 【详解】 解:(1 解析:(1) 3;(2) 2 【解析】 【分析】 (1)原式利用平方根及立方根的定义化简,计算即可得到结果; (2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果. 【详解】 解:(1)原式=-(2-4)÷6+3 =+ +3 =3; (2)原式= = . 故答案为:(1)3;(2) . 【点睛】 本题考查实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 十九、解答题 19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【分析】 首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C 解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【分析】 首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE. 【详解】 证明:∵AB∥CD, ∴∠B=∠C(两直线平行,内错角相等), ∵∠B+∠D=180°(已知), ∴∠C+∠D=180°(等量代换), ∴CB∥DE(同旁内角互补,两直线平行). 故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行 【点睛】 本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明. 二十、解答题 20.(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′( 解析:(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′(2,1),O′(4,−1). 【点睛】 本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题 21.同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题 解析:同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 二十三、解答题 23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 二十四、解答题 24.(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E 解析:(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°. 证明:过点M作MP∥AB. ∵AB∥CD, ∴MP∥CD. ∴∠4=∠3. ∵MP∥AB, ∴∠1=∠2. ∵∠EMF=∠2+∠3, ∴∠EMF=∠1+∠4. ∴∠EMF=∠AEM+∠MFC; 证明:过点M作MQ∥AB. ∵AB∥CD, ∴MQ∥CD. ∴∠CFM+∠1=180°; ∵MQ∥AB, ∴∠AEM+∠2=180°. ∴∠CFM+∠1+∠AEM+∠2=360°. ∵∠EMF=∠1+∠2, ∴∠AEM+∠EMF+∠MFC=360°; (2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°; 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM=∠1,∠CFN=∠4,MP∥NQ, ∴∠2+∠3=180°, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4, ∴∠EMN+∠MNF-∠AEM-∠NFC =∠1+∠2+∠3+∠4-∠1-∠4 =∠2+∠3 =180°; 如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°. 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ, ∴∠2=∠3, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4, ∴∠EMN-∠MNF+∠AEM+∠NFC =∠1+∠2-∠3-∠4+180°-∠1+∠4 =180°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 质量 监测 答案 完整
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文