人教版七年级下册数学期末综合复习题(及答案).doc
《人教版七年级下册数学期末综合复习题(及答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末综合复习题(及答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末综合复习题(及答案) 一、选择题 1.如图所示,下列四个选项中不正确的是( ) A.与是同旁内角 B.与是内错角 C.与是对顶角 D.与是邻补角 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是() A. B. C. D. 3.在平面直角坐标系中,点P(﹣5,4)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( ) A.3个 B.2个 C.1个 D.0个 5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( ) A. B. C. D. 6.如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为( ) A.﹣10 B.﹣﹣10 C.2 D.﹣2 7.如图,,交于点,平分,,则的度数为( ). A.60° B.55° C.50° D.45° 8.在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得点A1,A2,A3,…,,…,若点的坐标为,则点A2021的坐标为( ) A. B. C. D. 九、填空题 9.若,则的值为 十、填空题 10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______ 十一、填空题 11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________. 十二、填空题 12.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十三、填空题 13.如图所示,是用一张长方形纸条折成的,如果,那么___°. 十四、填空题 14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____. 十五、填空题 15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为,则对应的正整数是_______. 第1列 第2列 第3列 第4列 …… 第1行 1 2 5 10 …… 第2行 4 3 6 11 …… 第3行 9 8 7 12 …… 第4行 16 15 14 13 …… 第5行 …… …… …… …… …… 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.求满足下列各式的未知数. (1). (2). 十九、解答题 19.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补. 请将小华的想法补充完整: ∵和交于点. ∴;( ) 而是的中点,那么,又已知, ∴( ), ∴,(全等三角形对应边相等) ∴,( ) ∴,( ) ∴和互补.( ) 二十、解答题 20.已知点P(﹣3a﹣4,a+2). (1)若点P在y轴上,试求P点的坐标; (2)若M(5,8),且PM//x轴,试求P点的坐标; (3)若点P到x轴,y轴的距离相等,试求P点的坐标. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 又例如:∵,即,∴的整数部分为2,小数部分为. 请解答: (1)的整数部分是______ ,小数部分是______ . (2)如果的小数部分为,的整数部分为,求的值. 二十二、解答题 22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 二十三、解答题 23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且. (1)求、的值; (2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数; (3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行? 二十四、解答题 24.已知直线,点分别为, 上的点. (1)如图1,若,, ,求与的度数; (2)如图2,若,, ,则_________; (3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示) 二十五、解答题 25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同旁内角,内错角,对顶角,邻补角的定义逐项分析. 【详解】 A. 与是同旁内角,故该选项正确,不符合题意; B. 与不是内错角,故该选项不正确,符合题意; C. 与是对顶角,故该选项正确,不符合题意; D. 与是邻补角,故该选项正确,不符合题意; 故选B. 【点睛】 本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角. 2.D 【分析】 根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案. 【详解】 解:A、是由基本图形旋转得到的,故不选. B、是轴对称图形,故不选. C、是由基本图形旋转得到的,故不选. 解析:D 【分析】 根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案. 【详解】 解:A、是由基本图形旋转得到的,故不选. B、是轴对称图形,故不选. C、是由基本图形旋转得到的,故不选. D、是由基本图形平移得到的,故选此选项. 综上,本题选择D. 【点睛】 本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断. 3.B 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点P(﹣5,4)位于第二象限. 故选:B. 【点睛】 本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键. 4.A 【分析】 根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案. 【详解】 平面内,垂直于同一条直线的两直线平行;故①正确, 经过直线外一点,有且只有一条直线与这条直线平行,故②正确 垂线段最短,故③正确, 两直线平行,同旁内角互补,故④错误, ∴正确命题有①②③,共3个, 故选:A. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.A 【分析】 过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案. 【详解】 解:过G作GMAB, ∴∠2=∠5, ∵ABCD, ∴MGCD, ∴∠6=∠4, ∴∠FGC=∠5+∠6=∠2+∠4, ∵FG、CG分别为∠EFG,∠ECD的角平分线, ∴∠1=∠2=∠EFG,∠3=∠4=∠ECD, ∵∠E+2∠G=210°, ∴∠E+∠1+∠2+∠ECD=210°, ∵ABCD, ∴∠ENB=∠ECD, ∴∠E+∠1+∠2+∠ENB=210°, ∵∠1=∠E+∠ENB, ∴∠1+∠1+∠2=210°, ∴3∠1=210°, ∴∠1=70°, ∴∠EFG=2×70°=140°. 故选:A. 【点睛】 此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等. 6.D 【分析】 先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根. 【详解】 根据图象:直角三角形两边长分别为2和1, ∴ ∴x在数轴原点左面, ∴, 则, 则它的立方根为; 故选:D. 【点睛】 本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数. 7.C 【分析】 根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得. 【详解】 , , 又∵ , 平分, , 故选:C. 【点睛】 本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点. 8.C 【分析】 根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可. 【详解】 解:∵点的坐标为, ∴点的伴随点的坐标为,即 解析:C 【分析】 根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可. 【详解】 解:∵点的坐标为, ∴点的伴随点的坐标为,即 , 同理得: ∴每4个点为一个循环组依次循环, ∵, ∴A2021的坐标与的坐标相同, 即A2021的坐标为, 故选:C. 【点睛】 本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环. 九、填空题 9.-1 【解析】 解:有题意得,,,,则 解析:-1 【解析】 解:有题意得,,,,则 十、填空题 10.a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(- 解析:a=3 b=-4 【分析】 先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值 【详解】 由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4), 点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4), 则a=3,b=-4. 【点睛】 此题考查关于x轴、y轴对称的点的坐标,难度不大 十一、填空题 11.50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的 解析:50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的角平分线, ∴∠EOC=∠AOC,∠FOC=∠BOC, ∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°; 若射线OC在∠AOB的外部, ①射线OE,OF只有1个在∠AOB外面,如图, ∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°; ②射线OE,OF都在∠AOB外面,如图, ∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°; 综上:∠EOF的度数为50°或130°, 故答案为:50°或130°. 【点睛】 本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用. 十二、填空题 12.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十三、填空题 13.64 【分析】 如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解. 【详解】 解:∵长方形的对边互相平行, ∴∠3=180°﹣∠1=180°﹣128°=52°, 由翻 解析:64 【分析】 如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解. 【详解】 解:∵长方形的对边互相平行, ∴∠3=180°﹣∠1=180°﹣128°=52°, 由翻折的性质得,∠2(180°﹣∠3)(180°﹣52°)=64°. 故答案为:64. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键. 十四、填空题 14.【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n 解析:【分析】 由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案. 【详解】 由图可知, 每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1, 即2n﹣1=11,n=6. ∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64. ∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139. 故答案为:139. 【点睛】 本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 十五、填空题 15.138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n 解析:138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题. 【详解】 解:∵正整数6对应的位置记为, 即表示第2行第3列的数, ∴表示第12行第7列的数, 由1行1列的数字是12-0=12-(1-1)=1, 2行2列的数字是22-1=22-(2-1)=3, 3行3列的数字是32-2=32-(3-1)=7, … n行n列的数字是n2-(n-1)=n2-n+1, ∴第12行12列的数字是122-12+1=133, ∴第12行第7列的数字是138, 故答案为:138. 【点睛】 此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 解析:(1)或;(2) 【分析】 (1)根据平方根的定义直接开平方求解即可; (2)先两边同时除以,再根据立方根的定义直接开立方即可求解. 【详解】 解:(1), 即或, 解得或. (2), , 解得. 【点睛】 本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义. 十九、解答题 19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论. 【详解】 解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论. 【详解】 解:∵CF和BE相交于点O, ∴∠COB=∠EOF;(对顶角相等), 而O是CF的中点,那么CO=FO,又已知EO=BO, ∴△COB≌△FOE(SAS), ∴BC=EF,(全等三角形对应边相等), ∴∠BCO=∠F,(全等三角形的对应角相等), ∴AB∥DF,(内错角相等,两直线平行), ∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补), 故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补. 【点睛】 本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键. 二十、解答题 20.(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1). 【分析】 (1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案; (2)根据平行于x轴的直线上的点的纵坐标相 解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1). 【分析】 (1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案; (2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案; (3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案. 【详解】 (1)∵点P在y轴上, ∴, ∴, ∴ ∴P(0,). (2)∵PM//x轴, ∴, ∴,此时,, ∴P(-22,8) (3)∵若点P到x轴,y轴的距离相等, ∴, ∴或, 解得:或, 当时,﹣3a﹣4=,a+2=, ∴P(,), 当时,﹣3a﹣4=-1,a+2=1, ∴P(-1,1), 综上所述:P(,)或P(-1,1). 【点睛】 本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 二十一、解答题 21.(1)4,;(2)1 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵<<,即4<<5 ∴的整数部分为4,小数部分为−4. (2), 解析:(1)4,;(2)1 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵<<,即4<<5 ∴的整数部分为4,小数部分为−4. (2), ∴. ∵, ∴, ∴. 【点睛】 此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键. 二十二、解答题 22.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 二十三、解答题 23.(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的 解析:(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论. 【详解】 解:(1). 又,. ,; (2)设灯转动时间为秒, 如图,作,而 ,, , , , , (3)设灯转动秒,两灯的光束互相平行. 依题意得 ①当时, 两河岸平行,所以 两光线平行,所以 所以, 即:, 解得; ②当时, 两光束平行,所以 两河岸平行,所以 所以,, 解得; ③当时,图大概如①所示 , 解得(不合题意) 综上所述,当秒或82.5秒时,两灯的光束互相平行. 【点睛】 这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键. 二十四、解答题 24.(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法, 解析:(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法,根据,, 求解即可; (3)同理(1)的求法,根据,, 求解即可; 【详解】 解:(1)如图示,分别过点作,, ∵, ∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. (2)如图示,分别过点作,, ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. 故答案为:160; (3)同理(1)的求法 ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴, , ∴. 故答案为:. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键. 二十五、解答题 25.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 综合 复习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文