人教版七7年级下册数学期末综合复习卷及解析.doc
《人教版七7年级下册数学期末综合复习卷及解析.doc》由会员分享,可在线阅读,更多相关《人教版七7年级下册数学期末综合复习卷及解析.doc(24页珍藏版)》请在咨信网上搜索。
人教版七7年级下册数学期末综合复习卷及解析 一、选择题 1.下列图形中,有关角的说法正确的是( ) A.∠1与∠2是同位角 B.∠3与∠4是内错角 C.∠3与∠5是对顶角 D.∠4与∠5相等 2.下列生活现象中,不是平移现象的是( ) A.人站在运行着的电梯上 B.推拉窗左右推动 C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉 3.在平面直角坐标系中,下列点中位于第四象限的是( ) A. B. C. D. 4.下列命题是假命题的是( ) A.同位角相等,两直线平行 B.三角形的一个外角等于与它不相邻的两个内角的和 C.平行于同一条直线的两条直线平行 D.平面内,到一个角两边距离相等的点在这个角的平分线上 5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( ) A. B. C. D. 6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A.①② B.①③ C.①②③ D.①②④ 7.如图,一条“U”型水管中AB//CD,若∠B=75°,则∠C应该等于( ) A. B. C. D. 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 九、填空题 9.的算术平方根是__________. 十、填空题 10.平面直角坐标系中,点关于y轴的对称点的坐标为________. 十一、填空题 11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号) 十二、填空题 12.如图,已知AB//EF,∠B=40°,∠E=30°,则∠C-∠D的度数为________________. 十三、填空题 13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____. 十四、填空题 14.任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________. 十五、填空题 15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________. 十六、填空题 16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A出发,沿着A→B→C→D→A→B→...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___. 十七、解答题 17.计算(1) (2) 十八、解答题 18.求下列各式中实数的x值. (1)25x2﹣36=0 (2)|x+2|=π 十九、解答题 19.学习如何书写规范的证明过程,补充完整,并完成后面问题. 已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,∠A=∠FDE.求证:FD∥AC. 证明:∵DE∥BA(已知) ∴ ∠BFD= ( ) 又 ∵ ∠A=∠FDE ∴ = (等量代换) ∴FD∥CA( ) 模仿上面的证明过程,用另一种方法证明FD∥AC. 二十、解答题 20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5). (1)请在图中画出坐标轴,建立直角坐标系; (2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积. 二十一、解答题 21.数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答: (1)的小数部分是多少,请表示出来. (2)a为的小数部分,b为的整数部分,求的值. (3)已知8+=x+y,其中x是一个正整数,0<y<1,求的值. 二十二、解答题 22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236) 二十三、解答题 23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 二十四、解答题 24.课题学习:平行线的“等角转化”功能. 阅读理解: 如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程 解:过点A作ED∥BC, ∴∠B=∠EAB,∠C= 又∵∠EAB+∠BAC+∠DAC=180° ∴∠B+∠BAC+∠C=180° 解题反思: 从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB) 深化拓展: (3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数. 二十五、解答题 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角、内错角、对顶角的定义判断即可求解. 【详解】 A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意; B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意; C、∠3与∠5是对顶角,原说法正确,故此选项符合题意; D、∠4与∠5不相等,原说法错误,故此选项不符合题意; 故选:C. 【点睛】 本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分. 2.C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发 解析:C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动. 故选:C. 【点睛】 本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、在y轴上,故本选项不符合题意; B、在第二象限,故本选项不符合题意; C、在第四象限,故本选项符合题意; D、在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.D 【分析】 利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项. 【详解】 解:A、同位角相等,两直线平行,正确,是真命题,不符合题意; B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意; C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意; D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意; 故选:D. 【点睛】 考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大. 5.A 【分析】 过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可. 【详解】 如图,过三角板60°角的顶点作直线EF∥AB, ∵AB∥CD, ∴EF∥CD, ∴∠3=∠1,∠4=∠2, ∵∠3+∠4=60°, ∴∠1+∠2=60°, ∵∠1=25°, ∴∠2=35°, 故选A. 【点睛】 本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键. 6.A 【分析】 根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可. 【详解】 ①两个无理数的和可能是有理数,说法正确 如:和是无理数,,0是有理数 ②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确 ③是二次二项式,说法错误 ④立方根是本身的数有0和,说法错误 综上,说法正确的是①② 故选:A. 【点睛】 本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键. 7.C 【分析】 直接根据平行线的性质即可得出结论. 【详解】 解:∵AB∥CD,∠B=75°, ∴∠C=180°-∠B=180°-75°=105°. 故选:C. 【点睛】 本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键. 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 九、填空题 9.【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析: 【分析】 直接利用算术平方根的定义得出答案. 【详解】 解:, 的算术平方根是:. 故答案为:. 【点睛】 此题主要考查了算术平方根,正确掌握相关定义是解题关键. 十、填空题 10.(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴 解析:(3,-1) 【分析】 让纵坐标不变,横坐标互为相反数可得所求点的坐标. 【详解】 解:∵-3的相反数为3, ∴所求点的横坐标为3,纵坐标为-1, 故答案为(3,-1). 【点睛】 本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变. 十一、填空题 11.①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC 解析:①②④ 【分析】 根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可 【详解】 解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处, ∴∠1=∠2,A=AC,DC=D, ∴AD垂直平分C′C; ∴①,②都正确; ∵B=D, DC=D, ∴B=D= DC, ∴∠3=∠B,∠4=∠5, ∴∠3=∠4+∠5=2∠5即∠B=2∠BC; ∴③错误; 根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3, ∵∠ACB的角平分线交AD于点E, ∴2(∠6+∠5)=2∠B, ∴ ∴D ∥EC ∴④正确; 故答案为:①②④. 【点睛】 本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键. 十二、填空题 12.10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解析:10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解:如图,过点C作CG∥AB,过点D作DH∥EF, ∵AB//EF, ∴AB∥CG∥DH∥EF, ∵∠B=40°,∠E=30°, ∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH, ∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°. 故答案为:10°. 【点睛】 本题主要考查了平行线的性质,准确作出辅助线是解题的关键. 十三、填空题 13.【分析】 根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得 【详解】 ∵AF为△ACD的中线,△AFC的面积为2, ∴S△ACD=2S△AFC=4, ∵ 解析:【分析】 根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得 【详解】 ∵AF为△ACD的中线,△AFC的面积为2, ∴S△ACD=2S△AFC=4, ∵△ABC沿直线AC翻折得到△ADC, ∴S△ABC=S△ADC,BD⊥AC,BE=ED, ∴S四边形ABCD=8, ∴, ∵BE=2,AE=3, ∴BD=4, ∴AC=4, ∴CE=AC﹣AE=4﹣3=1. 故答案为1. 【点睛】 本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键. 十四、填空题 14.255 【分析】 根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∵,,, ∴对144只需进行3次操作 解析:255 【分析】 根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:∵,,, ∴对144只需进行3次操作后变为1, ∵,,, ∴对255只需进行3次操作后变为1, 从后向前推,找到需要4次操作得到1的最小整数, ∵,, , , ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:3,255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力. 十五、填空题 15.(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 解析:(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 十六、填空题 16.(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详 解析:(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详解】 解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1), ∴AB=3−(−2)=5,BC=2−(−1)=3, ∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16. ∵2020=126×16+4, ∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2). 故答案为:(2,2). 【点睛】 本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈. 十七、解答题 17.(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . ( 解析:(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . (2), , . 【点睛】 本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用. 十八、解答题 18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2= 解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2=36, x2=, x=±; (2)|x+2|=π, x+2=±π, x=﹣2﹣π或x=﹣2+π. 【点睛】 本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 十九、解答题 19.(1)∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行;(2)证明见解析. 【分析】 (1)根据两直线平行内错角相等和同位角相等两直线平行求解即可; (2)根据两直线平行 解析:(1)∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行;(2)证明见解析. 【分析】 (1)根据两直线平行内错角相等和同位角相等两直线平行求解即可; (2)根据两直线平行同位角相等和内错角相等两直线平行求解即可 【详解】 (1)证明:∵DE∥BA(已知) ∴ ∠BFD=∠FDE(两直线平行,内错角相等) 又 ∵ ∠A=∠FDE ∴∠A=∠BFD,(等量代换) ∴FD∥CA(同位角相等,两直线平行.) 故答案为:∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行. (2)证明:∵DE∥BA(已知), ∴∠A=∠DEC(两直线平行,同位角相等), 又 ∵ ∠A=∠FDE(已知), ∴∠FDE=∠DEC(等量代换), ∴FD∥CA;(内错角相等,两直线平行). 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为. 【分析】 (1)根据点的坐标确定平面直角坐标系即可; (2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质 解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为. 【分析】 (1)根据点的坐标确定平面直角坐标系即可; (2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积. 【详解】 解:(1)平面直角坐标系如图所示: (2)因为点A(−1,0)落在A′(0,4),同时点P(m,n)落在P′(n,6), ∴,解得, ∴点P的坐标为(1,2); 如图,线段PC扫过的面积即为平行四边形PCC′P′的面积, ∴线段PC扫过的面积为. 【点睛】 本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题 21.(1)-1;(2)1;(3)19 【分析】 (1)先求出的整数部分,即可求出结论; (2)先求出和的整数部分,即可求出a和b的值,从而求出结论; (3)求出的小数部分即可求出y,从而求出x的值,代入 解析:(1)-1;(2)1;(3)19 【分析】 (1)先求出的整数部分,即可求出结论; (2)先求出和的整数部分,即可求出a和b的值,从而求出结论; (3)求出的小数部分即可求出y,从而求出x的值,代入求值即可. 【详解】 解:(1)∵1<<2 ∴的整数部分是1 ∴的小数部分是-1; (2)∵1<<2,2<<3 ∴的整数部分是1,的整数部分是2 ∴的小数部分是-1; ∴a=-1,b=2 ∴ = =1 (3)∵的小数部分是-1 ∴y=-1 ∴x=8+-(-1)=9 ∴ = = =19 【点睛】 本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键. 二十二、解答题 22.(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3 解析:(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案. 试题解析:(1)∵正方形的面积是 25 平方分米, ∴正方形工料的边长是 5 分米; (2)设长方形的长宽分别为 3x 分米、2x 分米, 则 3x•2x=18, x2=3, x1= ,x2=(舍去), 3x=3>5,2x=2<5 , 即这块正方形工料不合格. 二十三、解答题 23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 二十四、解答题 24.(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; 解析:(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; (3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数. 【详解】 解:(1)过点A作ED∥BC, ∴∠B=∠EAB,∠C=∠DCA, 又∵∠EAB+∠BAC+∠DAC=180°, ∴∠B+∠BAC+∠C=180°. 故答案为:∠DAC; (2)过C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠D=∠FCD, ∵CF∥AB, ∴∠B=∠BCF, ∵∠BCF+∠BCD+∠DCF=360°, ∴∠B+∠BCD+∠D=360°; (3)如图3,过点E作EF∥AB, ∵AB∥CD, ∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°, ∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°, ∴∠BED=∠BEF+∠DEF=30°+35°=65°. 【点睛】 此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 二十五、解答题 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 综合 复习 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文