佛山市人教版七年级下册数学期末压轴难题试卷及答案.doc
《佛山市人教版七年级下册数学期末压轴难题试卷及答案.doc》由会员分享,可在线阅读,更多相关《佛山市人教版七年级下册数学期末压轴难题试卷及答案.doc(27页珍藏版)》请在咨信网上搜索。
佛山市人教版七年级下册数学期末压轴难题试卷及答案-百度文库 一、选择题 1.下列所示的四个图形中,和不是同位角的是( ) A.① B.② C.③ D.④ 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.平面直角坐标系中,点(a2+1,2020)所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ) A.对顶角相等 B.在同一平面内,垂直于同一条直线的两条直线平行 C.同旁内角互补 D.平行于同一条直线的两条直线平行 5.如图,直线,被直线,所截,若,,则的度数是( ) A. B. C. D. 6.下列说法正确的是( ) A.是分数 B.互为相反数的数的立方根也互为相反数 C.的系数是 D.的平方根是 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,…按此规律一直运动下去,则( ) A.1009 B.1010 C.1011 D.1012 二、填空题 9.计算:﹣=_____. 10.若过点的直线与轴平行,则点关于轴的对称点的坐标是_________. 11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则 ∠AOE=_____. 12.如图,直线a∥b,直角三角形的直角顶点在直线b上,已知∠1=48°,则∠2的度数是___度. 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____. 15.如图,在平面直角坐标系中,已知点,,连接,交y轴于B,且,,则点B坐标为__. 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________. 三、解答题 17.(1)-+; (2),求. 18.(1)已知am=3,an=5,求a3m﹣2n的值. (2)已知x﹣y=,xy=,求下列各式的值: ①x2y﹣xy2; ②x2+y2. 19.如图,,,求度数.完成说理过程并注明理由. 解:∵, ∴________( ) 又∵, ∴, ∴__________( ) ∴( ) ∵, ∴______度. 20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点. (1)在图中画出平移后的三角形,并写出点的坐标; (2)求三角形的面积. 21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分; (1)求a+b+c的值; (2)求3a﹣b+c的平方根. 二十二、解答题 22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗? 二十三、解答题 23.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 24.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 26.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】 解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选:C. 【点睛】 本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角. 2.C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是 解析:C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键. 3.A 【分析】 根据点的横纵坐标的正负判断即可. 【详解】 解:因为a2+1≥1, 所以点(a2+1,2020)所在象限是第一象限. 故选:A. 【点睛】 本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键. 4.C 【分析】 利用对顶角相等、平行线的判定与性质进行判断选择即可. 【详解】 解:A、对顶角相等,是真命题,不符合题意; B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意; C、同旁内角互补,是假命题,符合题意; D、平行于同一条直线的两条直线平行,真命题,不符合题意, 故选:C. 【点睛】 本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大. 5.C 【分析】 首先证明a∥b,推出∠4=∠5,求出∠5即可. 【详解】 解:∵∠1=∠2, ∴a∥b, ∴∠4=∠5, ∵∠5=180°﹣∠3=55°, ∴∠4=55°, 故选:C. 【点睛】 本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.B 【分析】 根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案. 【详解】 ∵是无理数, ∴A错误, ∵互为相反数的数的立方根也互为相反数, ∴B正确, ∵的系数是, ∴C错误, ∵的平方根是±8, ∴D错误, 故选B. 【点睛】 本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键. 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.B 【分析】 根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,,,,,,,,由此可知当n为偶数时;,,,,可得 ,,可以得到,由此求解即可. 解析:B 【分析】 根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,,,,,,,,由此可知当n为偶数时;,,,,可得 ,,可以得到,由此求解即可. 【详解】 解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6), ∴,,,,,,,,由此可知当n为偶数时 , ∴ ∵,,,,可得 ,, ∴可以得到, ∴, ∴, 故选B. 【点睛】 本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解. 二、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 10.【分析】 根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【详解】 解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5) ∴点M关于y轴的对 解析: 【分析】 根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【详解】 解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5) ∴点M关于y轴的对称点的坐标为:(3,-5) 故答案为(3,-5). 【点睛】 本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键. 11.60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A 解析:60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°. 【点睛】 本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点 解析:42 【分析】 利用平行线的性质,平角的性质解决问题即可. 【详解】 解:∵∠4=90°,∠1=48°, ∴∠3=90°-∠1=42°, ∵a∥b, ∴∠2=∠3=42°, 故答案为:42. 【点睛】 本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 14.5 【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5. 故答案为:5. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5 【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5. 故答案为:5. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 15.【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , 解析: 【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , , , , 点的坐标为, 故答案是:. 【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答. 16.(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4 解析:(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…, 【详解】 解:由题意,粒子运动到点(3,0)时经过了15秒, 设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an, 则a1=2,a2=6,a3=12,a4=20,…, a2-a1=2×2, a3-a2=2×3, a4-a3=2×4, …, an-an-1=2n, 各式相加得: an-a1=2(2+3+4+…+n)=n2+n-2, ∴an=n(n+1). ∵44×45=1980,故运动了1980秒时它到点A44(44,44); 又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动. 故达到A44(44,44)时向左运动34秒到达点(10,44), 即运动了2014秒.所求点应为(10,44). 故答案为:(10,44). 故答案为:15,(10,44). 【点睛】 本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键. 三、解答题 17.(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 解析:(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 18.(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, 解析:(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, ; (2)①,, ; ②,, . 【点睛】 本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键. 19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等 解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70 【分析】 根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可. 【详解】 解:∵EF∥AD, ∴∠2=∠3(两直线平行,同位角相等). 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥DG(内错角相等,两直线平行). ∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补). ∵∠AGD=110°, ∴∠BAC=70度. 故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70. 【点睛】 本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键. 20.(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出 解析:(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位. ∵, ∴, 如图所示,三角形A′B′C′即为所求, (2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7. 【点睛】 此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 21.(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可 解析:(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可解答. 【详解】 解:(1)∵某正数的两个平方根分别是3a-14和a+2, ∴(3a-14)+(a+2)=0, ∴a=3, 又∵b+11的立方根为-3, ∴b+11=(-3)3=-27, ∴b=-38, 又∵, ∴, 又∵c是的整数部分, ∴c=2; ∴a+b+c=3+(-38)+2=-33; (2)当a=3,b=-38,c=2时, 3a-b+c=3×3-(-38)+2=49, ∴3a-b+c的平方根是±7. 【点睛】 本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于 解析:不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2. 试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长. 答:李明不能用这块纸片裁出符合要求的长方形纸片. 点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 二十三、解答题 23.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 25.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用. 26.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=. 【分析】 (1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可; (2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可; (3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可. 【详解】 解:当108°的角是另一个内角的3倍时, 最小角为180°﹣108°﹣108÷3°=36°, 当180°﹣108°=72°的角是另一个内角的3倍时, 最小角为72°÷(1+3)=18°, 因此,这个“梦想三角形”的最小内角的度数为36°或18°. 故答案为:18°或36°. (2)△AOB、△AOC都是“梦想三角形” 证明:∵AB⊥OM, ∴∠OAB=90°, ∴∠ABO=90°﹣∠MON=30°, ∴∠OAB=3∠ABO, ∴△AOB为“梦想三角形”, ∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON, ∴∠OAC=80°﹣60°=20°, ∴∠AOB=3∠OAC, ∴△AOC是“梦想三角形”. (3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°, ∴∠EFC=∠ADC, ∴AD∥EF, ∴∠DEF=∠ADE, ∵∠DEF=∠B, ∴∠B=∠ADE, ∴DE∥BC, ∴∠CDE=∠BCD, ∵AE平分∠ADC, ∴∠ADE=∠CDE, ∴∠B=∠BCD, ∵△BCD是“梦想三角形”, ∴∠BDC=3∠B,或∠B=3∠BDC, ∵∠BDC+∠BCD+∠B=180°, ∴∠B=36°或∠B=. 【点睛】 本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 佛山市 人教版七 年级 下册 数学 期末 压轴 难题 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文