2022年人教版七7年级下册数学期末测试试卷及解析.doc
《2022年人教版七7年级下册数学期末测试试卷及解析.doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末测试试卷及解析.doc(27页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末测试试卷及解析 一、选择题 1.下列各图中,∠1和∠2为同旁内角的是( ) A. B. C. D. 2.在下面的四幅图案中,能通过图案(1)平移得到的是( ) A. B. C. D. 3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( ) A.点在第一象限 B.点的横坐标是 C.点到轴的距离是 D.以上都不对 4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( ) A. B. C. D. 6.下列计算正确的是( ) A. B. C. D. 7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ). A.50° B.40°或130° C.50°或130° D.40° 8.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( ) A. B. C. D. 九、填空题 9.若,则的值为 十、填空题 10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____. 十一、填空题 11.如图,C在直线BE上,∠ABC与∠ACE的角平分线交于点,∠A=m,若再作∠、∠的平分线,交于点;再作∠、∠的平分线,交于点;……;依次类推,则为_______. 十二、填空题 12.如图,∠B=∠C,∠A=∠D,有下列结论:①ABCD;②AEDF;③AE⊥BC;④∠AMC=∠BND.其中正确的有_____.(只填序号) 十三、填空题 13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________° 十四、填空题 14.已知a,b为两个连续的整数,且,则的平方根为___________. 十五、填空题 15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______. 十六、填空题 16.如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________. 十七、解答题 17.计算下列各式的值: (1)|–2|– + (–1)2021; (2). 十八、解答题 18.求下列各式中的x: (1)x2﹣=0. (2)(x﹣1)3=64. 十九、解答题 19.如图.试问、、有什么关系? 解:,理由如下: 过点作 则______( ) 又∵, ∴____________( ) ∴____________( ) ∴( ) 即____________ 二十、解答题 20.已知点A(-2,3),B(4,3),C(-1,-3). (1)在平面直角坐标系中标出点A,B,C的位置; (2)求线段AB的长; (3)求点C到x轴的距离,点C到AB的距离; (4)求三角形ABC的面积; (5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标. 二十一、解答题 21.已知的整数部分为a,小数部分为b. (1)求a,b的值: (2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由. 二十二、解答题 22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 二十三、解答题 23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系: ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 二十四、解答题 24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,. (1)将直角如图1位置摆放,如果,则______; (2)将直角如图2位置摆放,N为AC上一点,,请写出与之间的等量关系,并说明理由. (3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论. 二十五、解答题 25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同旁内角的概念逐一判断可得. 【详解】 解:A、∠1与∠2是同位角,此选项不符合题意; B、此图形中∠1与∠2不构成直接关系,此选项不符合题意; C、∠1与∠2是同旁内角,此选项符合题意; D、此图形中∠1与∠2不构成直接关系,此选项不符合题意; 故选C. 【点睛】 本题主要考查了同旁内角的概念,解题的关键在于能够熟练掌握同旁内角的概念. 2.C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题 解析:C 【分析】 平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可. 【详解】 解:A、对应点的连线相交,不能通过平移得到,不符合题意; B、对应点的连线相交,不能通过平移得到,不符合题意; C、可通过平移得到,符合题意; D、对应点的连线相交,不能通过平移得到,不符合题意; 故选:C. 【点睛】 本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 3.C 【分析】 根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可. 【详解】 解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意; B、点的横坐标是−1,原说法错误,该选项不符合题意; C、点到y轴的距离是1,该选项正确,符合题意; D、以上都不对,说法错误,该选项不符合题意; 故选:C. 【点睛】 本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键. 4.C 【分析】 根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可. 【详解】 解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题; (2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题; (3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题; (4)1的平方根 ,故(4)是假命题; 所以假命题的个数有3个, 故选:C. 【点睛】 本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键. 5.B 【分析】 根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出. 【详解】 解:由翻折可知,∠DAE=2,∠CBF=2, ∵, ∴∠DAB+∠CBA=180°, ∴∠DAE+∠CBF=180°, 即, ∴, 故选:B. 【点睛】 本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.D 【分析】 分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】 解:A、,故本选项不合题意; B、,故本选项不合题意; C、,故本选项不合题意; D、,故本选项符合题意; 故选:D. 【点睛】 本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.C 【分析】 如图,分两种情况进行讨论求解即可. 【详解】 解:①如图所示,AC∥BF,AD∥BE, ∴∠A=∠FOD,∠B=∠FOD, ∴∠B=∠A=50°; ②如图所示,AC∥BF,AD∥BE, ∴∠A=∠BOD,∠B+∠BOD=180°, ∴∠B+∠A=180°, ∴∠B=130°, 故选C. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 8.B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2× 解析:B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2×3分钟,将向下运动, (3,3)表示粒子运动了12=3×4分钟,将向左运动, ... 于是会出现: (44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动, ∴在第2021分钟时,粒子又向下移动了2021−1980=41个单位长度, ∴粒子的位置为(44,3), 故选:B. 【点睛】 本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律. 九、填空题 9.-1 【解析】 解:有题意得,,,,则 解析:-1 【解析】 解:有题意得,,,,则 十、填空题 10.1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m= 解析:1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m=2,n=-1, ∴(m+n)2020=(2-1)2020=1; 故答案为:1. 【点睛】 此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键. 十一、填空题 11.【分析】 根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】 当∠A=m时,∠=,以此类推,∠=,∠=,∠= 故答案为 【点睛】 本题主要考查了角平分线性质 解析: 【分析】 根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可 【详解】 当∠A=m时,∠=,以此类推,∠=,∠=,∠= 故答案为 【点睛】 本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键 十二、填空题 12.①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC 解析:①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC=∠FNM, 又∵∠BND=∠FNM, ∴∠AMC=∠BND, 故①②④正确, 由条件不能得出∠AMC=90°,故③不一定正确; 故答案为:①②④. 【点睛】 本题考查了对顶角的性质及平行线的判定与性质,难度一般. 十三、填空题 13.5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FE 解析:5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=45°,∠B=90°, ∴∠BEF=45°, ∴∠DEC=(180°-45°)=67.5°. 故答案为:67.5. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平 解析:±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键. 十五、填空题 15.-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a> 解析:-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a>-1, ∴-1<a<3. 故答案为:-1<a<3. 【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(5,6) 【分析】 根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标. 【详解】 解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳 解析:(5,6) 【分析】 根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标. 【详解】 解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动; 跳到(2,2)位置用时2×3=6秒,下一步向左跳动; 跳到(3,3)位置用时3×4=12秒,下一步向下跳动; 跳到(4,4)位置用时4×5=20秒,下一步向左跳动; … 由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒, 当n为奇数时,下一步向下跳动; 当n为偶数时,下一步向左跳动; ∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动, 则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6), 故答案为:(5,6). 【点睛】 此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间. 十七、解答题 17.(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, = 解析:(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =3+1-6, =–2. 【点睛】 本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 十八、解答题 18.(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查 解析:(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法. 十九、解答题 19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE 【分析】 过点作,则∠1,同理可以得到∠2,由此即可求解. 【详解】 解:, 解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE 【分析】 过点作,则∠1,同理可以得到∠2,由此即可求解. 【详解】 解:,理由如下: 过点作, 则∠1(两直线平行,内错角相等), 又∵,, ∴DE∥CF(平行于同一条直线的两直线平行), ∴∠2(两直线平行,内错角相等) ∴(等量代换) 即∠BCE, 故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE. 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根 解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解; (4)根据三角形面积=AB的长×C到直线AB的距离求解即可; (5)根据同底等高的两个三角形面积相等即可求解. 【详解】 解:(1)如图所示,即为所求; (2)∵A(-2,3),B(4,3), ∴AB=4-(-2)=6; (3)∵C(-1,-3), ∴C到x轴的距离为3,到直线AB的距离为6; (4)∵AB=6,C到直线AB的距离为6, ∴; (5)如图所示,三角形ABP与三角形ABC同底等高,即为所求 ∴P(0,-3); 同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9); ∴P(0,-3)或(0,9). 【点睛】 本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本 解析:(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握. 二十二、解答题 22.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 二十三、解答题 23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即 解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠GND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND). 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二十四、解答题 24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 【分析】 (1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案; (2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论; (3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可. 【详解】 解:(1)如图1,作CP∥a, ∵, ∴CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∴∠BCP=180°﹣∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°﹣∠CEF=90°, ∵∠AOG=46°, ∴∠CEF=136°, 故答案为136°; (2)∠AOG+∠NEF=90°. 理由如下:如图2,作CP∥a, 则CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, 而∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°; (3)如图3,当点P在GF上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠GOP+∠PQF, ∴∠OPQ=140°﹣∠POQ+∠PQF; 如图4,当点P在线段GF的延长线上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴140°﹣∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键. 二十五、解答题 25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当 解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【分析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【详解】 解:(1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|; 【点睛】 考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末 测试 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文